File size: 2,063 Bytes
d625610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-nicole
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-nicole

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8055
- Accuracy: 0.7969

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 500

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.368         | 0.102 | 51   | 1.4286          | 0.2903   |
| 1.1282        | 1.102 | 102  | 1.0812          | 0.4516   |
| 0.8288        | 2.102 | 153  | 1.4727          | 0.4194   |
| 0.3846        | 3.102 | 204  | 1.1547          | 0.6774   |
| 0.3053        | 4.102 | 255  | 1.1199          | 0.6774   |
| 0.0898        | 5.102 | 306  | 0.6689          | 0.7742   |
| 0.304         | 6.102 | 357  | 0.6001          | 0.8065   |
| 0.1134        | 7.102 | 408  | 0.5982          | 0.8710   |
| 0.0641        | 8.102 | 459  | 0.4034          | 0.9032   |
| 0.0834        | 9.082 | 500  | 0.3761          | 0.9032   |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.0.1+cu117
- Datasets 3.1.0
- Tokenizers 0.20.3