update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: dit_maveriq_tobacco3482_2023-07-04
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# dit_maveriq_tobacco3482_2023-07-04
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.2641
|
19 |
+
- Accuracy: 0.955
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 2e-05
|
39 |
+
- train_batch_size: 16
|
40 |
+
- eval_batch_size: 4
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 16
|
43 |
+
- total_train_batch_size: 256
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 100
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| No log | 0.96 | 3 | 2.0434 | 0.265 |
|
53 |
+
| No log | 1.96 | 6 | 1.9976 | 0.31 |
|
54 |
+
| No log | 2.96 | 9 | 1.7970 | 0.335 |
|
55 |
+
| No log | 3.96 | 12 | 1.6899 | 0.385 |
|
56 |
+
| No log | 4.96 | 15 | 1.6519 | 0.36 |
|
57 |
+
| No log | 5.96 | 18 | 1.5378 | 0.42 |
|
58 |
+
| No log | 6.96 | 21 | 1.4401 | 0.51 |
|
59 |
+
| No log | 7.96 | 24 | 1.3607 | 0.575 |
|
60 |
+
| No log | 8.96 | 27 | 1.2614 | 0.605 |
|
61 |
+
| No log | 9.96 | 30 | 1.1654 | 0.63 |
|
62 |
+
| No log | 10.96 | 33 | 1.0758 | 0.66 |
|
63 |
+
| No log | 11.96 | 36 | 0.9908 | 0.73 |
|
64 |
+
| No log | 12.96 | 39 | 0.9152 | 0.72 |
|
65 |
+
| No log | 13.96 | 42 | 0.8412 | 0.755 |
|
66 |
+
| No log | 14.96 | 45 | 0.7759 | 0.78 |
|
67 |
+
| No log | 15.96 | 48 | 0.7105 | 0.785 |
|
68 |
+
| No log | 16.96 | 51 | 0.6489 | 0.815 |
|
69 |
+
| No log | 17.96 | 54 | 0.6037 | 0.825 |
|
70 |
+
| No log | 18.96 | 57 | 0.5628 | 0.83 |
|
71 |
+
| No log | 19.96 | 60 | 0.5084 | 0.84 |
|
72 |
+
| No log | 20.96 | 63 | 0.4593 | 0.85 |
|
73 |
+
| No log | 21.96 | 66 | 0.4306 | 0.865 |
|
74 |
+
| No log | 22.96 | 69 | 0.4078 | 0.87 |
|
75 |
+
| No log | 23.96 | 72 | 0.3888 | 0.875 |
|
76 |
+
| No log | 24.96 | 75 | 0.3713 | 0.885 |
|
77 |
+
| No log | 25.96 | 78 | 0.3469 | 0.89 |
|
78 |
+
| No log | 26.96 | 81 | 0.3234 | 0.91 |
|
79 |
+
| No log | 27.96 | 84 | 0.3146 | 0.905 |
|
80 |
+
| No log | 28.96 | 87 | 0.3311 | 0.895 |
|
81 |
+
| No log | 29.96 | 90 | 0.3178 | 0.92 |
|
82 |
+
| No log | 30.96 | 93 | 0.3011 | 0.92 |
|
83 |
+
| No log | 31.96 | 96 | 0.2922 | 0.93 |
|
84 |
+
| No log | 32.96 | 99 | 0.2822 | 0.93 |
|
85 |
+
| No log | 33.96 | 102 | 0.2615 | 0.93 |
|
86 |
+
| No log | 34.96 | 105 | 0.2577 | 0.94 |
|
87 |
+
| No log | 35.96 | 108 | 0.2587 | 0.94 |
|
88 |
+
| No log | 36.96 | 111 | 0.2659 | 0.93 |
|
89 |
+
| No log | 37.96 | 114 | 0.2697 | 0.925 |
|
90 |
+
| No log | 38.96 | 117 | 0.2721 | 0.93 |
|
91 |
+
| No log | 39.96 | 120 | 0.2829 | 0.935 |
|
92 |
+
| No log | 40.96 | 123 | 0.2564 | 0.94 |
|
93 |
+
| No log | 41.96 | 126 | 0.2420 | 0.94 |
|
94 |
+
| No log | 42.96 | 129 | 0.2433 | 0.94 |
|
95 |
+
| No log | 43.96 | 132 | 0.2405 | 0.945 |
|
96 |
+
| No log | 44.96 | 135 | 0.2391 | 0.95 |
|
97 |
+
| No log | 45.96 | 138 | 0.2455 | 0.955 |
|
98 |
+
| No log | 46.96 | 141 | 0.2563 | 0.945 |
|
99 |
+
| No log | 47.96 | 144 | 0.2653 | 0.95 |
|
100 |
+
| No log | 48.96 | 147 | 0.2608 | 0.945 |
|
101 |
+
| No log | 49.96 | 150 | 0.2477 | 0.95 |
|
102 |
+
| No log | 50.96 | 153 | 0.2443 | 0.95 |
|
103 |
+
| No log | 51.96 | 156 | 0.2418 | 0.95 |
|
104 |
+
| No log | 52.96 | 159 | 0.2403 | 0.94 |
|
105 |
+
| No log | 53.96 | 162 | 0.2384 | 0.945 |
|
106 |
+
| No log | 54.96 | 165 | 0.2413 | 0.95 |
|
107 |
+
| No log | 55.96 | 168 | 0.2428 | 0.96 |
|
108 |
+
| No log | 56.96 | 171 | 0.2409 | 0.955 |
|
109 |
+
| No log | 57.96 | 174 | 0.2457 | 0.95 |
|
110 |
+
| No log | 58.96 | 177 | 0.2488 | 0.95 |
|
111 |
+
| No log | 59.96 | 180 | 0.2548 | 0.955 |
|
112 |
+
| No log | 60.96 | 183 | 0.2597 | 0.955 |
|
113 |
+
| No log | 61.96 | 186 | 0.2647 | 0.955 |
|
114 |
+
| No log | 62.96 | 189 | 0.2651 | 0.955 |
|
115 |
+
| No log | 63.96 | 192 | 0.2638 | 0.955 |
|
116 |
+
| No log | 64.96 | 195 | 0.2638 | 0.955 |
|
117 |
+
| No log | 65.96 | 198 | 0.2664 | 0.955 |
|
118 |
+
| No log | 66.96 | 201 | 0.2712 | 0.95 |
|
119 |
+
| No log | 67.96 | 204 | 0.2677 | 0.955 |
|
120 |
+
| No log | 68.96 | 207 | 0.2601 | 0.95 |
|
121 |
+
| No log | 69.96 | 210 | 0.2559 | 0.95 |
|
122 |
+
| No log | 70.96 | 213 | 0.2566 | 0.95 |
|
123 |
+
| No log | 71.96 | 216 | 0.2611 | 0.95 |
|
124 |
+
| No log | 72.96 | 219 | 0.2702 | 0.95 |
|
125 |
+
| No log | 73.96 | 222 | 0.2806 | 0.945 |
|
126 |
+
| No log | 74.96 | 225 | 0.2842 | 0.945 |
|
127 |
+
| No log | 75.96 | 228 | 0.2807 | 0.945 |
|
128 |
+
| No log | 76.96 | 231 | 0.2750 | 0.95 |
|
129 |
+
| No log | 77.96 | 234 | 0.2656 | 0.955 |
|
130 |
+
| No log | 78.96 | 237 | 0.2582 | 0.96 |
|
131 |
+
| No log | 79.96 | 240 | 0.2545 | 0.96 |
|
132 |
+
| No log | 80.96 | 243 | 0.2535 | 0.96 |
|
133 |
+
| No log | 81.96 | 246 | 0.2512 | 0.96 |
|
134 |
+
| No log | 82.96 | 249 | 0.2520 | 0.96 |
|
135 |
+
| No log | 83.96 | 252 | 0.2546 | 0.96 |
|
136 |
+
| No log | 84.96 | 255 | 0.2570 | 0.96 |
|
137 |
+
| No log | 85.96 | 258 | 0.2608 | 0.96 |
|
138 |
+
| No log | 86.96 | 261 | 0.2641 | 0.96 |
|
139 |
+
| No log | 87.96 | 264 | 0.2672 | 0.955 |
|
140 |
+
| No log | 88.96 | 267 | 0.2686 | 0.955 |
|
141 |
+
| No log | 89.96 | 270 | 0.2682 | 0.955 |
|
142 |
+
| No log | 90.96 | 273 | 0.2671 | 0.955 |
|
143 |
+
| No log | 91.96 | 276 | 0.2652 | 0.96 |
|
144 |
+
| No log | 92.96 | 279 | 0.2639 | 0.96 |
|
145 |
+
| No log | 93.96 | 282 | 0.2635 | 0.96 |
|
146 |
+
| No log | 94.96 | 285 | 0.2633 | 0.96 |
|
147 |
+
| No log | 95.96 | 288 | 0.2635 | 0.955 |
|
148 |
+
| No log | 96.96 | 291 | 0.2636 | 0.955 |
|
149 |
+
| No log | 97.96 | 294 | 0.2639 | 0.955 |
|
150 |
+
| No log | 98.96 | 297 | 0.2640 | 0.955 |
|
151 |
+
| No log | 99.96 | 300 | 0.2641 | 0.955 |
|
152 |
+
|
153 |
+
|
154 |
+
### Framework versions
|
155 |
+
|
156 |
+
- Transformers 4.26.1
|
157 |
+
- Pytorch 1.13.1.post200
|
158 |
+
- Datasets 2.9.0
|
159 |
+
- Tokenizers 0.13.2
|