File size: 14,050 Bytes
840c30d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: apache-2.0
base_model: WinKawaks/vit-tiny-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dit-base_tobacco-tiny_tobacco3482_kd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dit-base_tobacco-tiny_tobacco3482_kd

This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4787
- Accuracy: 0.815
- Brier Loss: 0.2625
- Nll: 1.3204
- F1 Micro: 0.815
- F1 Macro: 0.8058
- Ece: 0.1408
- Aurc: 0.0457

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll    | F1 Micro | F1 Macro | Ece    | Aurc   |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log        | 1.0   | 7    | 2.2200          | 0.225    | 0.9173     | 7.9176 | 0.225    | 0.1043   | 0.3247 | 0.7528 |
| No log        | 2.0   | 14   | 1.7791          | 0.37     | 0.7982     | 4.5330 | 0.37     | 0.2759   | 0.2753 | 0.6029 |
| No log        | 3.0   | 21   | 1.3855          | 0.485    | 0.6628     | 2.8048 | 0.485    | 0.4006   | 0.2716 | 0.3216 |
| No log        | 4.0   | 28   | 1.0594          | 0.575    | 0.5416     | 1.7471 | 0.575    | 0.5296   | 0.2314 | 0.2052 |
| No log        | 5.0   | 35   | 0.8946          | 0.645    | 0.4739     | 1.6979 | 0.645    | 0.6319   | 0.2168 | 0.1476 |
| No log        | 6.0   | 42   | 0.8969          | 0.66     | 0.4688     | 1.7181 | 0.66     | 0.6621   | 0.1985 | 0.1439 |
| No log        | 7.0   | 49   | 0.7466          | 0.72     | 0.3937     | 1.5484 | 0.72     | 0.7222   | 0.2135 | 0.1079 |
| No log        | 8.0   | 56   | 0.7075          | 0.725    | 0.3753     | 1.4585 | 0.7250   | 0.7100   | 0.2029 | 0.0894 |
| No log        | 9.0   | 63   | 0.9838          | 0.695    | 0.4504     | 2.0243 | 0.695    | 0.6681   | 0.2306 | 0.1204 |
| No log        | 10.0  | 70   | 0.7683          | 0.73     | 0.3867     | 1.5378 | 0.7300   | 0.7388   | 0.1699 | 0.0902 |
| No log        | 11.0  | 77   | 0.7114          | 0.755    | 0.3524     | 1.5684 | 0.755    | 0.7296   | 0.1687 | 0.0742 |
| No log        | 12.0  | 84   | 0.8151          | 0.76     | 0.3728     | 1.4721 | 0.76     | 0.7336   | 0.1863 | 0.0936 |
| No log        | 13.0  | 91   | 0.8346          | 0.77     | 0.3524     | 1.9540 | 0.7700   | 0.7528   | 0.1691 | 0.0790 |
| No log        | 14.0  | 98   | 0.7822          | 0.735    | 0.3898     | 1.6873 | 0.735    | 0.7215   | 0.2025 | 0.0860 |
| No log        | 15.0  | 105  | 0.7400          | 0.765    | 0.3580     | 1.5692 | 0.765    | 0.7167   | 0.1765 | 0.0809 |
| No log        | 16.0  | 112  | 0.8296          | 0.71     | 0.4027     | 1.5508 | 0.7100   | 0.6837   | 0.2185 | 0.0963 |
| No log        | 17.0  | 119  | 0.6868          | 0.79     | 0.3443     | 1.4135 | 0.79     | 0.7528   | 0.1971 | 0.0748 |
| No log        | 18.0  | 126  | 0.6290          | 0.795    | 0.3142     | 1.8030 | 0.795    | 0.7657   | 0.1476 | 0.0621 |
| No log        | 19.0  | 133  | 0.6454          | 0.79     | 0.3213     | 1.6664 | 0.79     | 0.7785   | 0.1649 | 0.0645 |
| No log        | 20.0  | 140  | 0.6089          | 0.785    | 0.3228     | 1.5436 | 0.785    | 0.7729   | 0.1708 | 0.0639 |
| No log        | 21.0  | 147  | 0.6715          | 0.785    | 0.3289     | 1.3422 | 0.785    | 0.7598   | 0.1787 | 0.0768 |
| No log        | 22.0  | 154  | 0.7075          | 0.79     | 0.3342     | 1.6069 | 0.79     | 0.7684   | 0.1587 | 0.0656 |
| No log        | 23.0  | 161  | 0.6226          | 0.805    | 0.3067     | 1.2400 | 0.805    | 0.7881   | 0.1611 | 0.0716 |
| No log        | 24.0  | 168  | 0.7501          | 0.77     | 0.3506     | 1.8952 | 0.7700   | 0.7530   | 0.1637 | 0.0746 |
| No log        | 25.0  | 175  | 0.6039          | 0.775    | 0.3168     | 1.4196 | 0.775    | 0.7647   | 0.1701 | 0.0664 |
| No log        | 26.0  | 182  | 0.6252          | 0.775    | 0.3260     | 1.4914 | 0.775    | 0.7507   | 0.1733 | 0.0657 |
| No log        | 27.0  | 189  | 0.6590          | 0.79     | 0.3303     | 1.5970 | 0.79     | 0.7773   | 0.1695 | 0.0747 |
| No log        | 28.0  | 196  | 0.5920          | 0.815    | 0.2988     | 1.6841 | 0.815    | 0.8127   | 0.1711 | 0.0635 |
| No log        | 29.0  | 203  | 0.5982          | 0.785    | 0.3163     | 1.6290 | 0.785    | 0.7678   | 0.1641 | 0.0597 |
| No log        | 30.0  | 210  | 0.5693          | 0.805    | 0.3028     | 1.4954 | 0.805    | 0.7917   | 0.1566 | 0.0578 |
| No log        | 31.0  | 217  | 0.5860          | 0.805    | 0.2964     | 1.3856 | 0.805    | 0.7966   | 0.1413 | 0.0599 |
| No log        | 32.0  | 224  | 0.5380          | 0.805    | 0.2775     | 1.6946 | 0.805    | 0.7981   | 0.1526 | 0.0494 |
| No log        | 33.0  | 231  | 0.5041          | 0.8      | 0.2745     | 1.6025 | 0.8000   | 0.7887   | 0.1639 | 0.0498 |
| No log        | 34.0  | 238  | 0.5134          | 0.83     | 0.2700     | 1.3768 | 0.83     | 0.8161   | 0.1464 | 0.0526 |
| No log        | 35.0  | 245  | 0.5371          | 0.81     | 0.2820     | 1.3584 | 0.81     | 0.7982   | 0.1466 | 0.0552 |
| No log        | 36.0  | 252  | 0.4987          | 0.815    | 0.2711     | 1.3735 | 0.815    | 0.8056   | 0.1540 | 0.0490 |
| No log        | 37.0  | 259  | 0.5145          | 0.81     | 0.2814     | 1.3537 | 0.81     | 0.8000   | 0.1415 | 0.0521 |
| No log        | 38.0  | 266  | 0.4992          | 0.815    | 0.2721     | 1.3420 | 0.815    | 0.7974   | 0.1453 | 0.0497 |
| No log        | 39.0  | 273  | 0.4992          | 0.795    | 0.2748     | 1.3579 | 0.795    | 0.7757   | 0.1485 | 0.0502 |
| No log        | 40.0  | 280  | 0.4881          | 0.82     | 0.2634     | 1.3745 | 0.82     | 0.8058   | 0.1504 | 0.0475 |
| No log        | 41.0  | 287  | 0.4977          | 0.81     | 0.2750     | 1.3208 | 0.81     | 0.7965   | 0.1520 | 0.0504 |
| No log        | 42.0  | 294  | 0.4865          | 0.815    | 0.2644     | 1.3840 | 0.815    | 0.8056   | 0.1517 | 0.0452 |
| No log        | 43.0  | 301  | 0.5034          | 0.81     | 0.2722     | 1.3683 | 0.81     | 0.7967   | 0.1404 | 0.0514 |
| No log        | 44.0  | 308  | 0.4925          | 0.815    | 0.2692     | 1.3979 | 0.815    | 0.8056   | 0.1386 | 0.0462 |
| No log        | 45.0  | 315  | 0.4643          | 0.825    | 0.2608     | 1.3015 | 0.825    | 0.8148   | 0.1516 | 0.0442 |
| No log        | 46.0  | 322  | 0.4851          | 0.82     | 0.2666     | 1.2561 | 0.82     | 0.8018   | 0.1494 | 0.0461 |
| No log        | 47.0  | 329  | 0.4751          | 0.82     | 0.2615     | 1.3167 | 0.82     | 0.8120   | 0.1544 | 0.0457 |
| No log        | 48.0  | 336  | 0.4666          | 0.82     | 0.2596     | 1.2470 | 0.82     | 0.8120   | 0.1326 | 0.0443 |
| No log        | 49.0  | 343  | 0.4856          | 0.815    | 0.2659     | 1.3283 | 0.815    | 0.8081   | 0.1501 | 0.0474 |
| No log        | 50.0  | 350  | 0.4690          | 0.83     | 0.2618     | 1.3227 | 0.83     | 0.8208   | 0.1448 | 0.0435 |
| No log        | 51.0  | 357  | 0.4835          | 0.81     | 0.2670     | 1.2956 | 0.81     | 0.7961   | 0.1425 | 0.0471 |
| No log        | 52.0  | 364  | 0.4857          | 0.82     | 0.2598     | 1.3115 | 0.82     | 0.8134   | 0.1547 | 0.0478 |
| No log        | 53.0  | 371  | 0.4747          | 0.82     | 0.2654     | 1.3717 | 0.82     | 0.8026   | 0.1596 | 0.0453 |
| No log        | 54.0  | 378  | 0.4925          | 0.815    | 0.2649     | 1.2289 | 0.815    | 0.8058   | 0.1452 | 0.0486 |
| No log        | 55.0  | 385  | 0.4670          | 0.825    | 0.2611     | 1.3080 | 0.825    | 0.8102   | 0.1307 | 0.0434 |
| No log        | 56.0  | 392  | 0.4878          | 0.81     | 0.2636     | 1.3040 | 0.81     | 0.7961   | 0.1546 | 0.0478 |
| No log        | 57.0  | 399  | 0.4679          | 0.82     | 0.2600     | 1.2618 | 0.82     | 0.8038   | 0.1516 | 0.0430 |
| No log        | 58.0  | 406  | 0.4802          | 0.815    | 0.2629     | 1.3054 | 0.815    | 0.8079   | 0.1448 | 0.0476 |
| No log        | 59.0  | 413  | 0.4746          | 0.82     | 0.2615     | 1.3177 | 0.82     | 0.8064   | 0.1308 | 0.0457 |
| No log        | 60.0  | 420  | 0.4784          | 0.82     | 0.2608     | 1.2495 | 0.82     | 0.8134   | 0.1336 | 0.0463 |
| No log        | 61.0  | 427  | 0.4751          | 0.82     | 0.2630     | 1.2886 | 0.82     | 0.8086   | 0.1416 | 0.0459 |
| No log        | 62.0  | 434  | 0.4751          | 0.815    | 0.2606     | 1.2453 | 0.815    | 0.8058   | 0.1529 | 0.0455 |
| No log        | 63.0  | 441  | 0.4737          | 0.825    | 0.2629     | 1.2975 | 0.825    | 0.8113   | 0.1286 | 0.0451 |
| No log        | 64.0  | 448  | 0.4840          | 0.815    | 0.2631     | 1.3210 | 0.815    | 0.8036   | 0.1392 | 0.0472 |
| No log        | 65.0  | 455  | 0.4747          | 0.82     | 0.2615     | 1.3054 | 0.82     | 0.8086   | 0.1491 | 0.0456 |
| No log        | 66.0  | 462  | 0.4767          | 0.815    | 0.2618     | 1.3056 | 0.815    | 0.8058   | 0.1517 | 0.0459 |
| No log        | 67.0  | 469  | 0.4748          | 0.82     | 0.2615     | 1.3046 | 0.82     | 0.8086   | 0.1525 | 0.0453 |
| No log        | 68.0  | 476  | 0.4782          | 0.815    | 0.2626     | 1.3088 | 0.815    | 0.8058   | 0.1519 | 0.0461 |
| No log        | 69.0  | 483  | 0.4769          | 0.815    | 0.2616     | 1.3133 | 0.815    | 0.8058   | 0.1555 | 0.0456 |
| No log        | 70.0  | 490  | 0.4767          | 0.815    | 0.2622     | 1.3067 | 0.815    | 0.8058   | 0.1435 | 0.0457 |
| No log        | 71.0  | 497  | 0.4776          | 0.815    | 0.2623     | 1.3111 | 0.815    | 0.8058   | 0.1533 | 0.0458 |
| 0.1688        | 72.0  | 504  | 0.4770          | 0.815    | 0.2621     | 1.3078 | 0.815    | 0.8058   | 0.1605 | 0.0457 |
| 0.1688        | 73.0  | 511  | 0.4783          | 0.815    | 0.2625     | 1.3109 | 0.815    | 0.8058   | 0.1503 | 0.0458 |
| 0.1688        | 74.0  | 518  | 0.4776          | 0.815    | 0.2621     | 1.3117 | 0.815    | 0.8058   | 0.1648 | 0.0458 |
| 0.1688        | 75.0  | 525  | 0.4784          | 0.815    | 0.2627     | 1.3110 | 0.815    | 0.8058   | 0.1463 | 0.0458 |
| 0.1688        | 76.0  | 532  | 0.4779          | 0.815    | 0.2625     | 1.3125 | 0.815    | 0.8058   | 0.1577 | 0.0457 |
| 0.1688        | 77.0  | 539  | 0.4794          | 0.815    | 0.2628     | 1.3110 | 0.815    | 0.8058   | 0.1420 | 0.0459 |
| 0.1688        | 78.0  | 546  | 0.4776          | 0.815    | 0.2623     | 1.3120 | 0.815    | 0.8058   | 0.1517 | 0.0455 |
| 0.1688        | 79.0  | 553  | 0.4789          | 0.815    | 0.2627     | 1.3101 | 0.815    | 0.8058   | 0.1460 | 0.0459 |
| 0.1688        | 80.0  | 560  | 0.4784          | 0.815    | 0.2626     | 1.3127 | 0.815    | 0.8058   | 0.1518 | 0.0457 |
| 0.1688        | 81.0  | 567  | 0.4782          | 0.815    | 0.2625     | 1.3103 | 0.815    | 0.8058   | 0.1408 | 0.0457 |
| 0.1688        | 82.0  | 574  | 0.4791          | 0.815    | 0.2627     | 1.3166 | 0.815    | 0.8058   | 0.1586 | 0.0458 |
| 0.1688        | 83.0  | 581  | 0.4785          | 0.815    | 0.2625     | 1.3116 | 0.815    | 0.8058   | 0.1436 | 0.0459 |
| 0.1688        | 84.0  | 588  | 0.4783          | 0.815    | 0.2624     | 1.3113 | 0.815    | 0.8058   | 0.1476 | 0.0458 |
| 0.1688        | 85.0  | 595  | 0.4785          | 0.815    | 0.2625     | 1.3169 | 0.815    | 0.8058   | 0.1500 | 0.0457 |
| 0.1688        | 86.0  | 602  | 0.4782          | 0.815    | 0.2625     | 1.3127 | 0.815    | 0.8058   | 0.1496 | 0.0457 |
| 0.1688        | 87.0  | 609  | 0.4778          | 0.815    | 0.2623     | 1.3119 | 0.815    | 0.8058   | 0.1496 | 0.0456 |
| 0.1688        | 88.0  | 616  | 0.4783          | 0.815    | 0.2625     | 1.3118 | 0.815    | 0.8058   | 0.1529 | 0.0458 |
| 0.1688        | 89.0  | 623  | 0.4784          | 0.815    | 0.2625     | 1.3149 | 0.815    | 0.8058   | 0.1485 | 0.0457 |
| 0.1688        | 90.0  | 630  | 0.4781          | 0.815    | 0.2624     | 1.3137 | 0.815    | 0.8058   | 0.1472 | 0.0457 |
| 0.1688        | 91.0  | 637  | 0.4784          | 0.815    | 0.2626     | 1.3111 | 0.815    | 0.8058   | 0.1492 | 0.0458 |
| 0.1688        | 92.0  | 644  | 0.4785          | 0.815    | 0.2625     | 1.3177 | 0.815    | 0.8058   | 0.1485 | 0.0457 |
| 0.1688        | 93.0  | 651  | 0.4790          | 0.815    | 0.2626     | 1.3208 | 0.815    | 0.8058   | 0.1462 | 0.0457 |
| 0.1688        | 94.0  | 658  | 0.4788          | 0.815    | 0.2625     | 1.3178 | 0.815    | 0.8058   | 0.1396 | 0.0458 |
| 0.1688        | 95.0  | 665  | 0.4785          | 0.815    | 0.2625     | 1.3203 | 0.815    | 0.8058   | 0.1484 | 0.0457 |
| 0.1688        | 96.0  | 672  | 0.4786          | 0.815    | 0.2625     | 1.3168 | 0.815    | 0.8058   | 0.1470 | 0.0457 |
| 0.1688        | 97.0  | 679  | 0.4786          | 0.815    | 0.2625     | 1.3167 | 0.815    | 0.8058   | 0.1470 | 0.0457 |
| 0.1688        | 98.0  | 686  | 0.4787          | 0.815    | 0.2625     | 1.3192 | 0.815    | 0.8058   | 0.1408 | 0.0457 |
| 0.1688        | 99.0  | 693  | 0.4787          | 0.815    | 0.2625     | 1.3205 | 0.815    | 0.8058   | 0.1408 | 0.0457 |
| 0.1688        | 100.0 | 700  | 0.4787          | 0.815    | 0.2625     | 1.3204 | 0.815    | 0.8058   | 0.1408 | 0.0457 |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.2.0.dev20231112+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1