Jonathan Jones
commited on
Commit
·
8726358
1
Parent(s):
d83d9f4
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 105.84 +/- 83.18
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f834b350cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f834b350d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f834b350dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f834b350e60>", "_build": "<function ActorCriticPolicy._build at 0x7f834b350ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f834b350f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f834b356050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f834b3560e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f834b356170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f834b356200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f834b356290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f834b39c8a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652237993.6665318, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADN3ZD32IGq6hY4BujKkf7aU4SO7SgYWOQAAgD8AAIA/AGoGPFS77j1yaAe+bb4mvoOtAb7hF4m9AAAAAAAAAAAz7TA9Kfhpuo+pJryRhcG20HCZuYsdMDYAAIA/AACAP+bY5b1qSYc/5Qh/vRPWTr7zZfS9PvKYPQAAAAAAAAAADXr7PZQpszs7b9a8j49UPbqahTxWzqU9AAAAAAAAAAAAarI8FByLuj24gDsRuxW1GO5LulZ3kroAAIA/AACAP5pqOr2uJZe6muXAOaIV9DRSCCm68DPeuAAAgD8AAIA/M8hMvUhngLrqG1y79X+0Nad9kboa7iK1AACAPwAAgD+N27K9SPuLukj1ajlRgb00uge/Op3khLgAAIA/AACAP2artrwpIEi64ruSO+32wLYaJYY5+gSqugAAgD8AAIA/Wp/XvUhDj7otSw26PwIFtZjn0rjohR85AACAPwAAgD/NnMY7hSvAOE82LTx0k7q8HLoBvEaa1r0AAAAAAAAAADPKzjxIe5O6u1KoO46ndTZNK9i5m7VnNQAAgD8AAIA/zWB0PPaMc7pJsZG7hYgUt5C0TjrehKg6AACAPwAAgD9AMc69XD9NOSRMqzs9O9u8MlyRu+Bm87wAAAAAAAAAABNNSD7x+2g8ff9OuqRHf7i1Jvs9i4h6uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIluttMxUMVECUhpRSlIwBbJRN6AOMAXSUR0B3xI1LrX18dX2UKGgGaAloD0MIscItH0lNRUCUhpRSlGgVTQsBaBZHQHfIhAnlXBB1fZQoaAZoCWgPQwiCOA8nMAE3QJSGlFKUaBVL/WgWR0B31lLytmthdX2UKGgGaAloD0MIzO7Jw0LqUkCUhpRSlGgVTegDaBZHQHfgYC+10DF1fZQoaAZoCWgPQwg5DVGFv/NgQJSGlFKUaBVN6ANoFkdAd/mL7oB7u3V9lChoBmgJaA9DCCrJOhxd01NAlIaUUpRoFU3oA2gWR0B4IVnEl3QldX2UKGgGaAloD0MIlrN3Rtt+YUCUhpRSlGgVTegDaBZHQHghrFGXokl1fZQoaAZoCWgPQwhpq5LIPo1aQJSGlFKUaBVN6ANoFkdAeDNbtJFspHV9lChoBmgJaA9DCBLAzeLFCEdAlIaUUpRoFU3oA2gWR0B4VZoUSIxhdX2UKGgGaAloD0MIUKbR5GI4NkCUhpRSlGgVTQ4BaBZHQHhzzaTOgQJ1fZQoaAZoCWgPQwgFhqxu9URDQJSGlFKUaBVNIAFoFkdAeI2YFaB7NXV9lChoBmgJaA9DCMXkDTDz6l5AlIaUUpRoFU3oA2gWR0B4oc2sJY1YdX2UKGgGaAloD0MI/g5FgT5HZECUhpRSlGgVTegDaBZHQHkCcUdq+Jx1fZQoaAZoCWgPQwgZqfdUTh5iQJSGlFKUaBVN6ANoFkdAeSVuMuOCG3V9lChoBmgJaA9DCM064/ti0mJAlIaUUpRoFU3oA2gWR0B5KQ7kn1FpdX2UKGgGaAloD0MIj6flB64WX0CUhpRSlGgVTegDaBZHQHktqL4vexh1fZQoaAZoCWgPQwiHi9zT1f5eQJSGlFKUaBVN6ANoFkdAeTG4/eLvTnV9lChoBmgJaA9DCAN64c6F21hAlIaUUpRoFU3oA2gWR0B5MWHuZ1FIdX2UKGgGaAloD0MIntMs0O4XWUCUhpRSlGgVTegDaBZHQHk6SeI2wV11fZQoaAZoCWgPQwjS+8bXnjFcQJSGlFKUaBVN6ANoFkdAeT6pWFN+LHV9lChoBmgJaA9DCK4Mqg1OjmFAlIaUUpRoFU3oA2gWR0B5TL9m6GxmdX2UKGgGaAloD0MI1/fhICFaSUCUhpRSlGgVTegDaBZHQHlWlmFrVON1fZQoaAZoCWgPQwiCVIodjTFaQJSGlFKUaBVN6ANoFkdAeW6r9l2/z3V9lChoBmgJaA9DCI1jJHsE2mBAlIaUUpRoFU3oA2gWR0B5k4c+7lJZdX2UKGgGaAloD0MIoBaDh2l3YECUhpRSlGgVTegDaBZHQHnNV4gRsdl1fZQoaAZoCWgPQwhxOslWFzhpQJSGlFKUaBVNuAFoFkdAedr6pYLb6HV9lChoBmgJaA9DCL7dkhywMFpAlIaUUpRoFU3oA2gWR0B57bBO58SgdX2UKGgGaAloD0MId76fGi/+WkCUhpRSlGgVTegDaBZHQHoGq4MF2V51fZQoaAZoCWgPQwi5xmeyf0NWQJSGlFKUaBVN6ANoFkdAeh6e3x4IKXV9lChoBmgJaA9DCMbhzK/m919AlIaUUpRoFU3oA2gWR0B6khpCa7VbdX2UKGgGaAloD0MI28NeKGACVUCUhpRSlGgVTegDaBZHQHq6/CdjG1h1fZQoaAZoCWgPQwgcP1QaMeNLQJSGlFKUaBVN6ANoFkdAer6k3CKrJnV9lChoBmgJaA9DCBhCzvv/KltAlIaUUpRoFU3oA2gWR0B6w3tRekYXdX2UKGgGaAloD0MIp+uJrgs3KECUhpRSlGgVS9BoFkdAesWC/oJRfnV9lChoBmgJaA9DCIMz+PvFxllAlIaUUpRoFU3oA2gWR0B6x5YdQwbmdX2UKGgGaAloD0MIowT9hR5CUkCUhpRSlGgVTegDaBZHQHrHP4REnb91fZQoaAZoCWgPQwiQgxJm2u1SQJSGlFKUaBVN6ANoFkdAes/vm5lOGnV9lChoBmgJaA9DCLDna5bLDl1AlIaUUpRoFU3oA2gWR0B61A10knkUdX2UKGgGaAloD0MIfepYpfRuYECUhpRSlGgVTegDaBZHQHrhR9LHuJF1fZQoaAZoCWgPQwhuxJPdzEhKQJSGlFKUaBVL2mgWR0B68f29L6DXdX2UKGgGaAloD0MIcY3PZP+EOECUhpRSlGgVS+xoFkdAevo0fYBeX3V9lChoBmgJaA9DCATidf2CG1pAlIaUUpRoFU3oA2gWR0B7AQbsF+uvdX2UKGgGaAloD0MIN23GaYjUXUCUhpRSlGgVTegDaBZHQHsjIysS00F1fZQoaAZoCWgPQwhBR6ta0u9cQJSGlFKUaBVN6ANoFkdAe1kGUwBYFXV9lChoBmgJaA9DCKxWJvxSVFVAlIaUUpRoFU3oA2gWR0B7ZjnSv1UVdX2UKGgGaAloD0MIWYl5VtIoWECUhpRSlGgVTegDaBZHQHt4aVY6nzh1fZQoaAZoCWgPQwgZOQt72otVQJSGlFKUaBVN6ANoFkdAe5DS39aUzXV9lChoBmgJaA9DCMO2RZkNsWBAlIaUUpRoFU3oA2gWR0B8ALkyULUkdX2UKGgGaAloD0MIJnFWRE2IO0CUhpRSlGgVS+poFkdAfAmbrC3w1HV9lChoBmgJaA9DCCUfuwuUcFBAlIaUUpRoFU3oA2gWR0B8IocuJ1q4dX2UKGgGaAloD0MI0xHAzeI3VECUhpRSlGgVTegDaBZHQHws8w1zhgp1fZQoaAZoCWgPQwjfisQENVpVQJSGlFKUaBVN6ANoFkdAfC8BgNPP9nV9lChoBmgJaA9DCN5Wem02D11AlIaUUpRoFU3oA2gWR0B8Lq6qbSZ0dX2UKGgGaAloD0MIRUseT8uSXkCUhpRSlGgVTegDaBZHQHw3fzWf9P11fZQoaAZoCWgPQwifrYODvTVYQJSGlFKUaBVN6ANoFkdAfDujurp7kXV9lChoBmgJaA9DCNnqckpANVhAlIaUUpRoFU3oA2gWR0B8SRB6a9bpdX2UKGgGaAloD0MI9goL7gf1aECUhpRSlGgVTTICaBZHQHxSqm4y44J1fZQoaAZoCWgPQwitTs5Q3IBgQJSGlFKUaBVN6ANoFkdAfFoHck+otXV9lChoBmgJaA9DCKNWmL7XElZAlIaUUpRoFU3oA2gWR0B8YR+TeO4odX2UKGgGaAloD0MIoHB2a5koX0CUhpRSlGgVTegDaBZHQHxmRRl6JIl1fZQoaAZoCWgPQwibrFEP0VA8wJSGlFKUaBVNLwFoFkdAfHCSQYDT0HV9lChoBmgJaA9DCJ5F71TAdV1AlIaUUpRoFU3oA2gWR0B8f8+B6KLsdX2UKGgGaAloD0MI4j0HliPDWkCUhpRSlGgVTegDaBZHQHysfWcz68B1fZQoaAZoCWgPQwgotRfR9sZnQJSGlFKUaBVNsQNoFkdAfNMmukk8inV9lChoBmgJaA9DCDJzgctjM2FAlIaUUpRoFU3oA2gWR0B9Dwa/ATIvdX2UKGgGaAloD0MIVaTC2EI+XECUhpRSlGgVTegDaBZHQH1f2NR3u/l1fZQoaAZoCWgPQwgOSwM/qopdQJSGlFKUaBVN6ANoFkdAfXixTKkl/3V9lChoBmgJaA9DCOhpwCDpMl1AlIaUUpRoFU3oA2gWR0B9gzk4m1IAdX2UKGgGaAloD0MI5YBdTZ6GYECUhpRSlGgVTegDaBZHQH2E+jqOcUd1fZQoaAZoCWgPQwjSqSufZTFhQJSGlFKUaBVN6ANoFkdAfY8uLJjlP3V9lChoBmgJaA9DCP2jb9I0RltAlIaUUpRoFU3oA2gWR0B9lAebNKRMdX2UKGgGaAloD0MI9WiqJ/PJXECUhpRSlGgVTegDaBZHQH2jBNmDlHV1fZQoaAZoCWgPQwhDIJc48nthQJSGlFKUaBVN6ANoFkdAfazfTCtRvXV9lChoBmgJaA9DCEZgrG9gL1lAlIaUUpRoFU3oA2gWR0B9tJeXzDoAdX2UKGgGaAloD0MIKowtBLldYUCUhpRSlGgVTegDaBZHQH27+nZTQ3R1fZQoaAZoCWgPQwhvnBTmPXBVQJSGlFKUaBVN6ANoFkdAfcGUg0TDfnV9lChoBmgJaA9DCIjxmld1vjFAlIaUUpRoFU0jAWgWR0B9whxgiNbUdX2UKGgGaAloD0MIgH9KlSiBXUCUhpRSlGgVTegDaBZHQH3ML3Gn4wh1fZQoaAZoCWgPQwjx89+D12tfQJSGlFKUaBVN6ANoFkdAfdrwkgOjI3V9lChoBmgJaA9DCEj5SbXPRmBAlIaUUpRoFU3oA2gWR0B+AyKbayrxdX2UKGgGaAloD0MIqp7MP/oqQcCUhpRSlGgVTQcBaBZHQH4G68L8aXN1fZQoaAZoCWgPQwim8naE03lXQJSGlFKUaBVN6ANoFkdAfiHr2QGOdXV9lChoBmgJaA9DCD6WPnTBMWNAlIaUUpRoFU3oA2gWR0B+Vfklu3tsdX2UKGgGaAloD0MIiq92FOc7VECUhpRSlGgVTegDaBZHQH5ezxgAp8Z1fZQoaAZoCWgPQwiJ00m2uuJCwJSGlFKUaBVNBgFoFkdAfrXws5GSZHV9lChoBmgJaA9DCOymlNdKS1JAlIaUUpRoFU3oA2gWR0B+x9CBwuM/dX2UKGgGaAloD0MIW7QAbavbX0CUhpRSlGgVTegDaBZHQH7JfHDJlrd1fZQoaAZoCWgPQwhxBKkUu5BrQJSGlFKUaBVN9gJoFkdAfsu6qsEJSnV9lChoBmgJaA9DCNS5opSQ52JAlIaUUpRoFU3oA2gWR0B+0pJmNBGAdX2UKGgGaAloD0MIqFMe3QiuVECUhpRSlGgVTegDaBZHQH7WxI4EOiF1fZQoaAZoCWgPQwix+iMMgzVjQJSGlFKUaBVN6ANoFkdAfuT0U47zTXV9lChoBmgJaA9DCHB4QURq9mJAlIaUUpRoFU3oA2gWR0B+75RgqmTDdX2UKGgGaAloD0MI0sPQ6uQ1WkCUhpRSlGgVTegDaBZHQH73wwsXizd1fZQoaAZoCWgPQwigMv59xphdQJSGlFKUaBVN6ANoFkdAfv+Whh6SknV9lChoBmgJaA9DCHlzuFZ75GNAlIaUUpRoFU3oA2gWR0B/Bg8uBczJdX2UKGgGaAloD0MIFCF1O3sRYECUhpRSlGgVTegDaBZHQH8mVL39JjF1fZQoaAZoCWgPQwjTaHIxhglrQJSGlFKUaBVN9QFoFkdAfygVsk6cRXV9lChoBmgJaA9DCNE/wcWKtVtAlIaUUpRoFU3oA2gWR0B/XkZ/CqIadX2UKGgGaAloD0MIQ6z+CMNcTECUhpRSlGgVTegDaBZHQH9jP9pAUtZ1fZQoaAZoCWgPQwjFdvcA3YlfQJSGlFKUaBVN6ANoFkdAf8sZof0VanVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65367481dcfaf8edd72c903a569146d54da72f3fe9ead3715acc598f7d6c2f5c
|
3 |
+
size 144044
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f834b350cb0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f834b350d40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f834b350dd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f834b350e60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f834b350ef0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f834b350f80>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f834b356050>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f834b3560e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f834b356170>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f834b356200>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f834b356290>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f834b39c8a0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652237993.6665318,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADN3ZD32IGq6hY4BujKkf7aU4SO7SgYWOQAAgD8AAIA/AGoGPFS77j1yaAe+bb4mvoOtAb7hF4m9AAAAAAAAAAAz7TA9Kfhpuo+pJryRhcG20HCZuYsdMDYAAIA/AACAP+bY5b1qSYc/5Qh/vRPWTr7zZfS9PvKYPQAAAAAAAAAADXr7PZQpszs7b9a8j49UPbqahTxWzqU9AAAAAAAAAAAAarI8FByLuj24gDsRuxW1GO5LulZ3kroAAIA/AACAP5pqOr2uJZe6muXAOaIV9DRSCCm68DPeuAAAgD8AAIA/M8hMvUhngLrqG1y79X+0Nad9kboa7iK1AACAPwAAgD+N27K9SPuLukj1ajlRgb00uge/Op3khLgAAIA/AACAP2artrwpIEi64ruSO+32wLYaJYY5+gSqugAAgD8AAIA/Wp/XvUhDj7otSw26PwIFtZjn0rjohR85AACAPwAAgD/NnMY7hSvAOE82LTx0k7q8HLoBvEaa1r0AAAAAAAAAADPKzjxIe5O6u1KoO46ndTZNK9i5m7VnNQAAgD8AAIA/zWB0PPaMc7pJsZG7hYgUt5C0TjrehKg6AACAPwAAgD9AMc69XD9NOSRMqzs9O9u8MlyRu+Bm87wAAAAAAAAAABNNSD7x+2g8ff9OuqRHf7i1Jvs9i4h6uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIluttMxUMVECUhpRSlIwBbJRN6AOMAXSUR0B3xI1LrX18dX2UKGgGaAloD0MIscItH0lNRUCUhpRSlGgVTQsBaBZHQHfIhAnlXBB1fZQoaAZoCWgPQwiCOA8nMAE3QJSGlFKUaBVL/WgWR0B31lLytmthdX2UKGgGaAloD0MIzO7Jw0LqUkCUhpRSlGgVTegDaBZHQHfgYC+10DF1fZQoaAZoCWgPQwg5DVGFv/NgQJSGlFKUaBVN6ANoFkdAd/mL7oB7u3V9lChoBmgJaA9DCCrJOhxd01NAlIaUUpRoFU3oA2gWR0B4IVnEl3QldX2UKGgGaAloD0MIlrN3Rtt+YUCUhpRSlGgVTegDaBZHQHghrFGXokl1fZQoaAZoCWgPQwhpq5LIPo1aQJSGlFKUaBVN6ANoFkdAeDNbtJFspHV9lChoBmgJaA9DCBLAzeLFCEdAlIaUUpRoFU3oA2gWR0B4VZoUSIxhdX2UKGgGaAloD0MIUKbR5GI4NkCUhpRSlGgVTQ4BaBZHQHhzzaTOgQJ1fZQoaAZoCWgPQwgFhqxu9URDQJSGlFKUaBVNIAFoFkdAeI2YFaB7NXV9lChoBmgJaA9DCMXkDTDz6l5AlIaUUpRoFU3oA2gWR0B4oc2sJY1YdX2UKGgGaAloD0MI/g5FgT5HZECUhpRSlGgVTegDaBZHQHkCcUdq+Jx1fZQoaAZoCWgPQwgZqfdUTh5iQJSGlFKUaBVN6ANoFkdAeSVuMuOCG3V9lChoBmgJaA9DCM064/ti0mJAlIaUUpRoFU3oA2gWR0B5KQ7kn1FpdX2UKGgGaAloD0MIj6flB64WX0CUhpRSlGgVTegDaBZHQHktqL4vexh1fZQoaAZoCWgPQwiHi9zT1f5eQJSGlFKUaBVN6ANoFkdAeTG4/eLvTnV9lChoBmgJaA9DCAN64c6F21hAlIaUUpRoFU3oA2gWR0B5MWHuZ1FIdX2UKGgGaAloD0MIntMs0O4XWUCUhpRSlGgVTegDaBZHQHk6SeI2wV11fZQoaAZoCWgPQwjS+8bXnjFcQJSGlFKUaBVN6ANoFkdAeT6pWFN+LHV9lChoBmgJaA9DCK4Mqg1OjmFAlIaUUpRoFU3oA2gWR0B5TL9m6GxmdX2UKGgGaAloD0MI1/fhICFaSUCUhpRSlGgVTegDaBZHQHlWlmFrVON1fZQoaAZoCWgPQwiCVIodjTFaQJSGlFKUaBVN6ANoFkdAeW6r9l2/z3V9lChoBmgJaA9DCI1jJHsE2mBAlIaUUpRoFU3oA2gWR0B5k4c+7lJZdX2UKGgGaAloD0MIoBaDh2l3YECUhpRSlGgVTegDaBZHQHnNV4gRsdl1fZQoaAZoCWgPQwhxOslWFzhpQJSGlFKUaBVNuAFoFkdAedr6pYLb6HV9lChoBmgJaA9DCL7dkhywMFpAlIaUUpRoFU3oA2gWR0B57bBO58SgdX2UKGgGaAloD0MId76fGi/+WkCUhpRSlGgVTegDaBZHQHoGq4MF2V51fZQoaAZoCWgPQwi5xmeyf0NWQJSGlFKUaBVN6ANoFkdAeh6e3x4IKXV9lChoBmgJaA9DCMbhzK/m919AlIaUUpRoFU3oA2gWR0B6khpCa7VbdX2UKGgGaAloD0MI28NeKGACVUCUhpRSlGgVTegDaBZHQHq6/CdjG1h1fZQoaAZoCWgPQwgcP1QaMeNLQJSGlFKUaBVN6ANoFkdAer6k3CKrJnV9lChoBmgJaA9DCBhCzvv/KltAlIaUUpRoFU3oA2gWR0B6w3tRekYXdX2UKGgGaAloD0MIp+uJrgs3KECUhpRSlGgVS9BoFkdAesWC/oJRfnV9lChoBmgJaA9DCIMz+PvFxllAlIaUUpRoFU3oA2gWR0B6x5YdQwbmdX2UKGgGaAloD0MIowT9hR5CUkCUhpRSlGgVTegDaBZHQHrHP4REnb91fZQoaAZoCWgPQwiQgxJm2u1SQJSGlFKUaBVN6ANoFkdAes/vm5lOGnV9lChoBmgJaA9DCLDna5bLDl1AlIaUUpRoFU3oA2gWR0B61A10knkUdX2UKGgGaAloD0MIfepYpfRuYECUhpRSlGgVTegDaBZHQHrhR9LHuJF1fZQoaAZoCWgPQwhuxJPdzEhKQJSGlFKUaBVL2mgWR0B68f29L6DXdX2UKGgGaAloD0MIcY3PZP+EOECUhpRSlGgVS+xoFkdAevo0fYBeX3V9lChoBmgJaA9DCATidf2CG1pAlIaUUpRoFU3oA2gWR0B7AQbsF+uvdX2UKGgGaAloD0MIN23GaYjUXUCUhpRSlGgVTegDaBZHQHsjIysS00F1fZQoaAZoCWgPQwhBR6ta0u9cQJSGlFKUaBVN6ANoFkdAe1kGUwBYFXV9lChoBmgJaA9DCKxWJvxSVFVAlIaUUpRoFU3oA2gWR0B7ZjnSv1UVdX2UKGgGaAloD0MIWYl5VtIoWECUhpRSlGgVTegDaBZHQHt4aVY6nzh1fZQoaAZoCWgPQwgZOQt72otVQJSGlFKUaBVN6ANoFkdAe5DS39aUzXV9lChoBmgJaA9DCMO2RZkNsWBAlIaUUpRoFU3oA2gWR0B8ALkyULUkdX2UKGgGaAloD0MIJnFWRE2IO0CUhpRSlGgVS+poFkdAfAmbrC3w1HV9lChoBmgJaA9DCCUfuwuUcFBAlIaUUpRoFU3oA2gWR0B8IocuJ1q4dX2UKGgGaAloD0MI0xHAzeI3VECUhpRSlGgVTegDaBZHQHws8w1zhgp1fZQoaAZoCWgPQwjfisQENVpVQJSGlFKUaBVN6ANoFkdAfC8BgNPP9nV9lChoBmgJaA9DCN5Wem02D11AlIaUUpRoFU3oA2gWR0B8Lq6qbSZ0dX2UKGgGaAloD0MIRUseT8uSXkCUhpRSlGgVTegDaBZHQHw3fzWf9P11fZQoaAZoCWgPQwifrYODvTVYQJSGlFKUaBVN6ANoFkdAfDujurp7kXV9lChoBmgJaA9DCNnqckpANVhAlIaUUpRoFU3oA2gWR0B8SRB6a9bpdX2UKGgGaAloD0MI9goL7gf1aECUhpRSlGgVTTICaBZHQHxSqm4y44J1fZQoaAZoCWgPQwitTs5Q3IBgQJSGlFKUaBVN6ANoFkdAfFoHck+otXV9lChoBmgJaA9DCKNWmL7XElZAlIaUUpRoFU3oA2gWR0B8YR+TeO4odX2UKGgGaAloD0MIoHB2a5koX0CUhpRSlGgVTegDaBZHQHxmRRl6JIl1fZQoaAZoCWgPQwibrFEP0VA8wJSGlFKUaBVNLwFoFkdAfHCSQYDT0HV9lChoBmgJaA9DCJ5F71TAdV1AlIaUUpRoFU3oA2gWR0B8f8+B6KLsdX2UKGgGaAloD0MI4j0HliPDWkCUhpRSlGgVTegDaBZHQHysfWcz68B1fZQoaAZoCWgPQwgotRfR9sZnQJSGlFKUaBVNsQNoFkdAfNMmukk8inV9lChoBmgJaA9DCDJzgctjM2FAlIaUUpRoFU3oA2gWR0B9Dwa/ATIvdX2UKGgGaAloD0MIVaTC2EI+XECUhpRSlGgVTegDaBZHQH1f2NR3u/l1fZQoaAZoCWgPQwgOSwM/qopdQJSGlFKUaBVN6ANoFkdAfXixTKkl/3V9lChoBmgJaA9DCOhpwCDpMl1AlIaUUpRoFU3oA2gWR0B9gzk4m1IAdX2UKGgGaAloD0MI5YBdTZ6GYECUhpRSlGgVTegDaBZHQH2E+jqOcUd1fZQoaAZoCWgPQwjSqSufZTFhQJSGlFKUaBVN6ANoFkdAfY8uLJjlP3V9lChoBmgJaA9DCP2jb9I0RltAlIaUUpRoFU3oA2gWR0B9lAebNKRMdX2UKGgGaAloD0MI9WiqJ/PJXECUhpRSlGgVTegDaBZHQH2jBNmDlHV1fZQoaAZoCWgPQwhDIJc48nthQJSGlFKUaBVN6ANoFkdAfazfTCtRvXV9lChoBmgJaA9DCEZgrG9gL1lAlIaUUpRoFU3oA2gWR0B9tJeXzDoAdX2UKGgGaAloD0MIKowtBLldYUCUhpRSlGgVTegDaBZHQH27+nZTQ3R1fZQoaAZoCWgPQwhvnBTmPXBVQJSGlFKUaBVN6ANoFkdAfcGUg0TDfnV9lChoBmgJaA9DCIjxmld1vjFAlIaUUpRoFU0jAWgWR0B9whxgiNbUdX2UKGgGaAloD0MIgH9KlSiBXUCUhpRSlGgVTegDaBZHQH3ML3Gn4wh1fZQoaAZoCWgPQwjx89+D12tfQJSGlFKUaBVN6ANoFkdAfdrwkgOjI3V9lChoBmgJaA9DCEj5SbXPRmBAlIaUUpRoFU3oA2gWR0B+AyKbayrxdX2UKGgGaAloD0MIqp7MP/oqQcCUhpRSlGgVTQcBaBZHQH4G68L8aXN1fZQoaAZoCWgPQwim8naE03lXQJSGlFKUaBVN6ANoFkdAfiHr2QGOdXV9lChoBmgJaA9DCD6WPnTBMWNAlIaUUpRoFU3oA2gWR0B+Vfklu3tsdX2UKGgGaAloD0MIiq92FOc7VECUhpRSlGgVTegDaBZHQH5ezxgAp8Z1fZQoaAZoCWgPQwiJ00m2uuJCwJSGlFKUaBVNBgFoFkdAfrXws5GSZHV9lChoBmgJaA9DCOymlNdKS1JAlIaUUpRoFU3oA2gWR0B+x9CBwuM/dX2UKGgGaAloD0MIW7QAbavbX0CUhpRSlGgVTegDaBZHQH7JfHDJlrd1fZQoaAZoCWgPQwhxBKkUu5BrQJSGlFKUaBVN9gJoFkdAfsu6qsEJSnV9lChoBmgJaA9DCNS5opSQ52JAlIaUUpRoFU3oA2gWR0B+0pJmNBGAdX2UKGgGaAloD0MIqFMe3QiuVECUhpRSlGgVTegDaBZHQH7WxI4EOiF1fZQoaAZoCWgPQwix+iMMgzVjQJSGlFKUaBVN6ANoFkdAfuT0U47zTXV9lChoBmgJaA9DCHB4QURq9mJAlIaUUpRoFU3oA2gWR0B+75RgqmTDdX2UKGgGaAloD0MI0sPQ6uQ1WkCUhpRSlGgVTegDaBZHQH73wwsXizd1fZQoaAZoCWgPQwigMv59xphdQJSGlFKUaBVN6ANoFkdAfv+Whh6SknV9lChoBmgJaA9DCHlzuFZ75GNAlIaUUpRoFU3oA2gWR0B/Bg8uBczJdX2UKGgGaAloD0MIFCF1O3sRYECUhpRSlGgVTegDaBZHQH8mVL39JjF1fZQoaAZoCWgPQwjTaHIxhglrQJSGlFKUaBVN9QFoFkdAfygVsk6cRXV9lChoBmgJaA9DCNE/wcWKtVtAlIaUUpRoFU3oA2gWR0B/XkZ/CqIadX2UKGgGaAloD0MIQ6z+CMNcTECUhpRSlGgVTegDaBZHQH9jP9pAUtZ1fZQoaAZoCWgPQwjFdvcA3YlfQJSGlFKUaBVN6ANoFkdAf8sZof0VanVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e502de4e394e9b427d5888c5c36704e41b5d31b6ee403f314b841d0322652617
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41fa809163c9c5c5fe000bfcc4e381e004093126b07505a206d5bda40fb0fc5d
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e977f6f7f91e7dd2b414dba4f1780fde1463b3a40eca0640022a99af0ced26b
|
3 |
+
size 261709
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 105.83714518950057, "std_reward": 83.18375813163917, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T03:10:41.285095"}
|