jonatasgrosman
commited on
Commit
•
4e0e3d3
1
Parent(s):
17e5c76
update evaluation
Browse files- README.md +40 -72
- eval.py +164 -0
- full_eval.sh +15 -0
- log_mozilla-foundation_common_voice_6_0_es_test_predictions.txt +0 -0
- log_mozilla-foundation_common_voice_6_0_es_test_predictions_greedy.txt +0 -0
- log_mozilla-foundation_common_voice_6_0_es_test_targets.txt +0 -0
- log_speech-recognition-community-v2_dev_data_es_validation_predictions.txt +0 -0
- log_speech-recognition-community-v2_dev_data_es_validation_predictions_greedy.txt +0 -0
- log_speech-recognition-community-v2_dev_data_es_validation_targets.txt +0 -0
- mozilla-foundation_common_voice_6_0_es_test_eval_results.txt +2 -0
- mozilla-foundation_common_voice_6_0_es_test_eval_results_greedy.txt +2 -0
- speech-recognition-community-v2_dev_data_es_validation_eval_results.txt +2 -0
- speech-recognition-community-v2_dev_data_es_validation_eval_results_greedy.txt +2 -0
README.md
CHANGED
@@ -2,20 +2,24 @@
|
|
2 |
language: es
|
3 |
datasets:
|
4 |
- common_voice
|
|
|
5 |
metrics:
|
6 |
- wer
|
7 |
- cer
|
8 |
tags:
|
|
|
9 |
- audio
|
10 |
- automatic-speech-recognition
|
11 |
- speech
|
12 |
- xlsr-fine-tuning-week
|
|
|
|
|
13 |
license: apache-2.0
|
14 |
model-index:
|
15 |
- name: XLSR Wav2Vec2 Spanish by Jonatas Grosman
|
16 |
results:
|
17 |
- task:
|
18 |
-
name: Speech Recognition
|
19 |
type: automatic-speech-recognition
|
20 |
dataset:
|
21 |
name: Common Voice es
|
@@ -24,10 +28,36 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Test WER
|
26 |
type: wer
|
27 |
-
value: 8.
|
28 |
- name: Test CER
|
29 |
type: cer
|
30 |
-
value: 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
---
|
32 |
|
33 |
# Wav2Vec2-Large-XLSR-53-Spanish
|
@@ -109,76 +139,14 @@ for i, predicted_sentence in enumerate(predicted_sentences):
|
|
109 |
|
110 |
## Evaluation
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
```python
|
115 |
-
import torch
|
116 |
-
import re
|
117 |
-
import librosa
|
118 |
-
from datasets import load_dataset, load_metric
|
119 |
-
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
120 |
-
|
121 |
-
LANG_ID = "es"
|
122 |
-
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-spanish"
|
123 |
-
DEVICE = "cuda"
|
124 |
-
|
125 |
-
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
|
126 |
-
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
|
127 |
-
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
|
128 |
-
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
|
129 |
-
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
|
130 |
-
|
131 |
-
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
|
137 |
-
|
138 |
-
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
139 |
-
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
140 |
-
model.to(DEVICE)
|
141 |
-
|
142 |
-
# Preprocessing the datasets.
|
143 |
-
# We need to read the audio files as arrays
|
144 |
-
def speech_file_to_array_fn(batch):
|
145 |
-
with warnings.catch_warnings():
|
146 |
-
warnings.simplefilter("ignore")
|
147 |
-
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
148 |
-
batch["speech"] = speech_array
|
149 |
-
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
|
150 |
-
return batch
|
151 |
-
|
152 |
-
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
153 |
-
|
154 |
-
# Preprocessing the datasets.
|
155 |
-
# We need to read the audio files as arrays
|
156 |
-
def evaluate(batch):
|
157 |
-
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
158 |
-
|
159 |
-
with torch.no_grad():
|
160 |
-
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
|
161 |
-
|
162 |
-
pred_ids = torch.argmax(logits, dim=-1)
|
163 |
-
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
164 |
-
return batch
|
165 |
-
|
166 |
-
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
167 |
-
|
168 |
-
predictions = [x.upper() for x in result["pred_strings"]]
|
169 |
-
references = [x.upper() for x in result["sentence"]]
|
170 |
-
|
171 |
-
print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
|
172 |
-
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
|
173 |
```
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-04-22). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
| pcuenq/wav2vec2-large-xlsr-53-es | 10.55% | 3.20% |
|
183 |
-
| facebook/wav2vec2-large-xlsr-53-spanish | 16.99% | 5.40% |
|
184 |
-
| mrm8488/wav2vec2-large-xlsr-53-spanish | 19.20% | 5.96% |
|
|
|
2 |
language: es
|
3 |
datasets:
|
4 |
- common_voice
|
5 |
+
- mozilla-foundation/common_voice_6_0
|
6 |
metrics:
|
7 |
- wer
|
8 |
- cer
|
9 |
tags:
|
10 |
+
- es
|
11 |
- audio
|
12 |
- automatic-speech-recognition
|
13 |
- speech
|
14 |
- xlsr-fine-tuning-week
|
15 |
+
- robust-speech-event
|
16 |
+
- mozilla-foundation/common_voice_6_0
|
17 |
license: apache-2.0
|
18 |
model-index:
|
19 |
- name: XLSR Wav2Vec2 Spanish by Jonatas Grosman
|
20 |
results:
|
21 |
- task:
|
22 |
+
name: Automatic Speech Recognition
|
23 |
type: automatic-speech-recognition
|
24 |
dataset:
|
25 |
name: Common Voice es
|
|
|
28 |
metrics:
|
29 |
- name: Test WER
|
30 |
type: wer
|
31 |
+
value: 8.82
|
32 |
- name: Test CER
|
33 |
type: cer
|
34 |
+
value: 2.58
|
35 |
+
- name: Test WER (+LM)
|
36 |
+
type: wer
|
37 |
+
value: 6.27
|
38 |
+
- name: Test CER (+LM)
|
39 |
+
type: cer
|
40 |
+
value: 2.06
|
41 |
+
- task:
|
42 |
+
name: Automatic Speech Recognition
|
43 |
+
type: automatic-speech-recognition
|
44 |
+
dataset:
|
45 |
+
name: Robust Speech Event - Dev Data
|
46 |
+
type: speech-recognition-community-v2/dev_data
|
47 |
+
args: es
|
48 |
+
metrics:
|
49 |
+
- name: Test WER
|
50 |
+
type: wer
|
51 |
+
value: 30.19
|
52 |
+
- name: Test CER
|
53 |
+
type: cer
|
54 |
+
value: 13.56
|
55 |
+
- name: Test WER (+LM)
|
56 |
+
type: wer
|
57 |
+
value: 24.71
|
58 |
+
- name: Test CER (+LM)
|
59 |
+
type: cer
|
60 |
+
value: 12.61
|
61 |
---
|
62 |
|
63 |
# Wav2Vec2-Large-XLSR-53-Spanish
|
|
|
139 |
|
140 |
## Evaluation
|
141 |
|
142 |
+
1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
+
```bash
|
145 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset mozilla-foundation/common_voice_6_0 --config es --split test
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
```
|
147 |
|
148 |
+
2. To evaluate on `speech-recognition-community-v2/dev_data`
|
|
|
|
|
149 |
|
150 |
+
```bash
|
151 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset speech-recognition-community-v2/dev_data --config es --split validation --chunk_length_s 5.0 --stride_length_s 1.0
|
152 |
+
```
|
|
|
|
|
|
eval.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from datasets import load_dataset, load_metric, Audio, Dataset
|
3 |
+
from transformers import pipeline, AutoFeatureExtractor, AutoTokenizer, AutoConfig, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
|
4 |
+
import re
|
5 |
+
import torch
|
6 |
+
import argparse
|
7 |
+
from typing import Dict
|
8 |
+
|
9 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
10 |
+
""" DO NOT CHANGE. This function computes and logs the result metrics. """
|
11 |
+
|
12 |
+
log_outputs = args.log_outputs
|
13 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
14 |
+
|
15 |
+
# load metric
|
16 |
+
wer = load_metric("wer")
|
17 |
+
cer = load_metric("cer")
|
18 |
+
|
19 |
+
# compute metrics
|
20 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
21 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
22 |
+
|
23 |
+
# print & log results
|
24 |
+
result_str = (
|
25 |
+
f"WER: {wer_result}\n"
|
26 |
+
f"CER: {cer_result}"
|
27 |
+
)
|
28 |
+
print(result_str)
|
29 |
+
|
30 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
31 |
+
f.write(result_str)
|
32 |
+
|
33 |
+
# log all results in text file. Possibly interesting for analysis
|
34 |
+
if log_outputs is not None:
|
35 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
36 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
37 |
+
|
38 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
39 |
+
|
40 |
+
# mapping function to write output
|
41 |
+
def write_to_file(batch, i):
|
42 |
+
p.write(f"{i}" + "\n")
|
43 |
+
p.write(batch["prediction"] + "\n")
|
44 |
+
t.write(f"{i}" + "\n")
|
45 |
+
t.write(batch["target"] + "\n")
|
46 |
+
|
47 |
+
result.map(write_to_file, with_indices=True)
|
48 |
+
|
49 |
+
|
50 |
+
def normalize_text(text: str, invalid_chars_regex: str, to_lower: bool) -> str:
|
51 |
+
""" DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
|
52 |
+
|
53 |
+
text = text.lower() if to_lower else text.upper()
|
54 |
+
|
55 |
+
text = re.sub(invalid_chars_regex, " ", text)
|
56 |
+
|
57 |
+
text = re.sub("\s+", " ", text).strip()
|
58 |
+
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
def main(args):
|
63 |
+
# load dataset
|
64 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
65 |
+
|
66 |
+
# for testing: only process the first two examples as a test
|
67 |
+
# dataset = dataset.select(range(10))
|
68 |
+
|
69 |
+
# load processor
|
70 |
+
if args.greedy:
|
71 |
+
processor = Wav2Vec2Processor.from_pretrained(args.model_id)
|
72 |
+
decoder = None
|
73 |
+
else:
|
74 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
|
75 |
+
decoder = processor.decoder
|
76 |
+
|
77 |
+
feature_extractor = processor.feature_extractor
|
78 |
+
tokenizer = processor.tokenizer
|
79 |
+
|
80 |
+
# resample audio
|
81 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate))
|
82 |
+
|
83 |
+
# load eval pipeline
|
84 |
+
if args.device is None:
|
85 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
86 |
+
|
87 |
+
config = AutoConfig.from_pretrained(args.model_id)
|
88 |
+
model = AutoModelForCTC.from_pretrained(args.model_id)
|
89 |
+
|
90 |
+
#asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
91 |
+
asr = pipeline("automatic-speech-recognition", config=config, model=model, tokenizer=tokenizer,
|
92 |
+
feature_extractor=feature_extractor, decoder=decoder, device=args.device)
|
93 |
+
|
94 |
+
# build normalizer config
|
95 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
|
96 |
+
tokens = [x for x in tokenizer.convert_ids_to_tokens(range(0, tokenizer.vocab_size))]
|
97 |
+
special_tokens = [
|
98 |
+
tokenizer.pad_token, tokenizer.word_delimiter_token,
|
99 |
+
tokenizer.unk_token, tokenizer.bos_token,
|
100 |
+
tokenizer.eos_token,
|
101 |
+
]
|
102 |
+
non_special_tokens = [x for x in tokens if x not in special_tokens]
|
103 |
+
invalid_chars_regex = f"[^\s{re.escape(''.join(set(non_special_tokens)))}]"
|
104 |
+
normalize_to_lower = False
|
105 |
+
for token in non_special_tokens:
|
106 |
+
if token.isalpha() and token.islower():
|
107 |
+
normalize_to_lower = True
|
108 |
+
break
|
109 |
+
|
110 |
+
# map function to decode audio
|
111 |
+
def map_to_pred(batch, args=args, asr=asr, invalid_chars_regex=invalid_chars_regex, normalize_to_lower=normalize_to_lower):
|
112 |
+
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
|
113 |
+
|
114 |
+
batch["prediction"] = prediction["text"]
|
115 |
+
batch["target"] = normalize_text(batch["sentence"], invalid_chars_regex, normalize_to_lower)
|
116 |
+
return batch
|
117 |
+
|
118 |
+
# run inference on all examples
|
119 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
120 |
+
|
121 |
+
# filtering out empty targets
|
122 |
+
result = result.filter(lambda example: example["target"] != "")
|
123 |
+
|
124 |
+
# compute and log_results
|
125 |
+
# do not change function below
|
126 |
+
log_results(result, args)
|
127 |
+
|
128 |
+
|
129 |
+
if __name__ == "__main__":
|
130 |
+
parser = argparse.ArgumentParser()
|
131 |
+
|
132 |
+
parser.add_argument(
|
133 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
134 |
+
)
|
135 |
+
parser.add_argument(
|
136 |
+
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
|
137 |
+
)
|
138 |
+
parser.add_argument(
|
139 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
140 |
+
)
|
141 |
+
parser.add_argument(
|
142 |
+
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
143 |
+
)
|
144 |
+
parser.add_argument(
|
145 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
|
146 |
+
)
|
147 |
+
parser.add_argument(
|
148 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
|
149 |
+
)
|
150 |
+
parser.add_argument(
|
151 |
+
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
|
152 |
+
)
|
153 |
+
parser.add_argument(
|
154 |
+
"--greedy", action='store_true', help="If defined, the LM will be ignored during inference."
|
155 |
+
)
|
156 |
+
parser.add_argument(
|
157 |
+
"--device",
|
158 |
+
type=int,
|
159 |
+
default=None,
|
160 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
161 |
+
)
|
162 |
+
args = parser.parse_args()
|
163 |
+
|
164 |
+
main(args)
|
full_eval.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CV - TEST
|
2 |
+
|
3 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset mozilla-foundation/common_voice_6_0 --config es --split test --log_outputs --greedy
|
4 |
+
mv log_mozilla-foundation_common_voice_6_0_es_test_predictions.txt log_mozilla-foundation_common_voice_6_0_es_test_predictions_greedy.txt
|
5 |
+
mv mozilla-foundation_common_voice_6_0_es_test_eval_results.txt mozilla-foundation_common_voice_6_0_es_test_eval_results_greedy.txt
|
6 |
+
|
7 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset mozilla-foundation/common_voice_6_0 --config es --split test --log_outputs
|
8 |
+
|
9 |
+
# HF EVENT - DEV
|
10 |
+
|
11 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset speech-recognition-community-v2/dev_data --config es --split validation --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs --greedy
|
12 |
+
mv log_speech-recognition-community-v2_dev_data_es_validation_predictions.txt log_speech-recognition-community-v2_dev_data_es_validation_predictions_greedy.txt
|
13 |
+
mv speech-recognition-community-v2_dev_data_es_validation_eval_results.txt speech-recognition-community-v2_dev_data_es_validation_eval_results_greedy.txt
|
14 |
+
|
15 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset speech-recognition-community-v2/dev_data --config es --split validation --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs
|
log_mozilla-foundation_common_voice_6_0_es_test_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_mozilla-foundation_common_voice_6_0_es_test_predictions_greedy.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_mozilla-foundation_common_voice_6_0_es_test_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_es_validation_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_es_validation_predictions_greedy.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_es_validation_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
mozilla-foundation_common_voice_6_0_es_test_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.06274240927087324
|
2 |
+
CER: 0.020634801278087225
|
mozilla-foundation_common_voice_6_0_es_test_eval_results_greedy.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.0882252112363629
|
2 |
+
CER: 0.025844566726410997
|
speech-recognition-community-v2_dev_data_es_validation_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.24710373296639887
|
2 |
+
CER: 0.12611519286276568
|
speech-recognition-community-v2_dev_data_es_validation_eval_results_greedy.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.3019663544764526
|
2 |
+
CER: 0.1356763316714773
|