jonatasgrosman
commited on
Commit
·
512c442
1
Parent(s):
0d74fa6
adjust README
Browse files
README.md
CHANGED
@@ -24,10 +24,10 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Test WER
|
26 |
type: wer
|
27 |
-
value: 12.
|
28 |
- name: Test CER
|
29 |
type: cer
|
30 |
-
value:
|
31 |
---
|
32 |
|
33 |
# Wav2Vec2-Large-XLSR-53-portuguese
|
@@ -49,8 +49,9 @@ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
49 |
|
50 |
LANG_ID = "pt"
|
51 |
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese"
|
|
|
52 |
|
53 |
-
test_dataset = load_dataset("common_voice", LANG_ID, split="test[:
|
54 |
|
55 |
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
56 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
@@ -64,17 +65,29 @@ def speech_file_to_array_fn(batch):
|
|
64 |
return batch
|
65 |
|
66 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
67 |
-
inputs = processor(test_dataset[
|
68 |
|
69 |
with torch.no_grad():
|
70 |
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
71 |
|
72 |
predicted_ids = torch.argmax(logits, dim=-1)
|
|
|
73 |
|
74 |
-
|
75 |
-
print("
|
|
|
|
|
76 |
```
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
## Evaluation
|
79 |
|
80 |
The model can be evaluated as follows on the Portuguese test data of Common Voice.
|
@@ -90,7 +103,7 @@ LANG_ID = "pt"
|
|
90 |
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese"
|
91 |
DEVICE = "cuda"
|
92 |
|
93 |
-
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", "
|
94 |
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
|
95 |
"=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。"]
|
96 |
|
@@ -134,6 +147,5 @@ print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"],
|
|
134 |
|
135 |
**Test Result**:
|
136 |
|
137 |
-
WER: 12.
|
138 |
-
|
139 |
-
CER: 11.01%
|
|
|
24 |
metrics:
|
25 |
- name: Test WER
|
26 |
type: wer
|
27 |
+
value: 12.51
|
28 |
- name: Test CER
|
29 |
type: cer
|
30 |
+
value: 13.59
|
31 |
---
|
32 |
|
33 |
# Wav2Vec2-Large-XLSR-53-portuguese
|
|
|
49 |
|
50 |
LANG_ID = "pt"
|
51 |
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese"
|
52 |
+
SAMPLES = 5
|
53 |
|
54 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
55 |
|
56 |
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
57 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
|
|
65 |
return batch
|
66 |
|
67 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
68 |
+
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
69 |
|
70 |
with torch.no_grad():
|
71 |
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
72 |
|
73 |
predicted_ids = torch.argmax(logits, dim=-1)
|
74 |
+
predicted_sentences = processor.batch_decode(predicted_ids)
|
75 |
|
76 |
+
for i, predicted_sentence in enumerate(predicted_sentences):
|
77 |
+
print("-" * 100)
|
78 |
+
print("Reference:", test_dataset[i]["sentence"])
|
79 |
+
print("Prediction:", predicted_sentence)
|
80 |
```
|
81 |
|
82 |
+
| Reference | Prediction |
|
83 |
+
| ------------- | ------------- |
|
84 |
+
| NEM O RADAR NEM OS OUTROS INSTRUMENTOS DETECTARAM O BOMBARDEIRO STEALTH. | NEM UM VADA ME OS OUTOS INSTRUMENTOS DE TETERAM UM BAMBEDER OSTAU |
|
85 |
+
| PEDIR DINHEIRO EMPRESTADO ÀS PESSOAS DA ALDEIA | PEDIAR DINHEIRO EMPRESTADO DÀS PESSOAS DA ALDEIA |
|
86 |
+
| PEDIR DINHEIRO EMPRESTADO ÀS PESSOAS DA ALDEIA | PEDIAR DINHEIRO EMPRESTADO DÀS PESSOAS DA ALDEIA |
|
87 |
+
| OITO | OITO |
|
88 |
+
| TRANCÁ-LOS | TRAM CALDOS |
|
89 |
+
| REALIZAR UMA INVESTIGAÇÃO PARA RESOLVER O PROBLEMA | REALIZARAMA INVESTIGAÇÃO PARA RESOLVER O PROBLEMA |
|
90 |
+
|
91 |
## Evaluation
|
92 |
|
93 |
The model can be evaluated as follows on the Portuguese test data of Common Voice.
|
|
|
103 |
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese"
|
104 |
DEVICE = "cuda"
|
105 |
|
106 |
+
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
|
107 |
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
|
108 |
"=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。"]
|
109 |
|
|
|
147 |
|
148 |
**Test Result**:
|
149 |
|
150 |
+
- WER: 12.51%
|
151 |
+
- CER: 13.59%
|
|