File size: 13,442 Bytes
b19206a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
from transformers import PreTrainedModel, PretrainedConfig, Wav2Vec2ForCTC
import json
import torch
from torch import nn
from torch.nn.utils.rnn import pad_sequence
import math
from typing import Optional

# x: torch.FloatTensor [T, B, D]
# mask: torch.BoolTensor [B, T], where True indicates padding
# returns: torch.LongTensor [B]
def get_lengths(x, mask=None):
    if mask is not None:
        return (~mask).long().sum(dim=1)
    else:
        return torch.LongTensor([x.size(0)] * x.size(1)).to(x.device)

# lens: torch.LongTensor [B]
# returns: torch.BoolTensor [B, max_lens], where True indicates padding
def lengths_to_padding_mask(lens):
    bsz, max_lens = lens.size(0), torch.max(lens).item()
    mask = torch.arange(max_lens).to(lens.device).view(1, max_lens)
    mask = mask.expand(bsz, -1) >= lens.view(bsz, 1).expand(-1, max_lens)
    return mask

# input_lengths: torch.LongTensor [B]
def get_output_lengths(input_lengths):
    conv_feature_layers = "[(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512,2,2)] + [(512,2,2)]"
    conv_cfg_list = eval(conv_feature_layers)

    def _conv_out_length(input_length, kernel_size, stride):
        return torch.floor((input_length - kernel_size) / stride + 1)

    for i in range(len(conv_cfg_list)):
        input_lengths = _conv_out_length(
            input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2]
        )

    return input_lengths.to(torch.long)

class ZeroSwotEncoderConfig(PretrainedConfig):
    model_type = "zero_swot_encoder"
    def __init__(
        self,
        wav2vec2_model_name_or_path="",
        compression_adapter=None,
        embed_dim=1024,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.wav2vec2_model_name_or_path = wav2vec2_model_name_or_path
        self.compression_adapter = compression_adapter
        self.embed_dim = embed_dim

    @classmethod
    def from_json_file(cls, json_file):
        with open(json_file, "r") as reader:
            text = reader.read()
        config_dict = json.loads(text)
        return cls(**config_dict)

class ZeroSwotEncoderModel(PreTrainedModel):
    config_class = ZeroSwotEncoderConfig
    model_type = "zero_swot_encoder"

    def __init__(self, config):
        super().__init__(config)

        self.wav2vec2 = Wav2Vec2ForCTC.from_pretrained(config.wav2vec2_model_name_or_path)
        self.compression_adapter = CompressionAdapter(config.compression_adapter)
        self.speech_embedder = SpeechEmbedder(config.embed_dim)

    def forward(self, input_values, attention_mask=None):
        input_lens = get_lengths(input_values, ~attention_mask)

        # Forward pass through wav2vec2 encoder
        x = self.wav2vec2.wav2vec2(input_values, attention_mask)[0]  # [B, T, D]
        # CTC predictions
        preds = self.wav2vec2.lm_head(x).argmax(-1)  # [B, T]
        # Get output lengths for x
        output_lens = get_output_lengths(input_lens)

        # Compression
        x, mask, _ = self.compression_adapter(x, preds, output_lens) # [B, N, D] with N << T

        # BOS and EOS embeddings
        x, mask = self.speech_embedder(x, mask) # [B, N+2, D]

        return x, ~mask


class SpeechEmbedder(nn.Module):
    def __init__(self, embed_dim):
        super().__init__()

        self.embed_dim = embed_dim
        self.bos_emb = nn.Parameter(torch.empty(embed_dim))
        self.eos_emb = nn.Parameter(torch.empty(embed_dim))

        self.scale = self.embed_dim ** 0.5
        
    def forward(self, x, padding_mask=None):
        """Add special embedding and positional embedding.
        Args:
            x (FloatTensor): (B, T, C)
            padding_mask (ByteTensor): (B, T)
        Outputs:
            x (FloatTensor): (B, T+2, C)
            padding_mask (ByteTensor): (B, T+2)
        """
        B = x.size(0)
        lengths = get_lengths(x.transpose(0, 1), padding_mask)
        assert B == len(lengths)
        
        if padding_mask is not None:
            x = x * (1 - padding_mask.unsqueeze(-1).type_as(x))
                
        # prepend bos
        x = torch.cat([self.bos_emb.view(1, 1, -1).expand(B, 1, -1), x], dim=1)
        lengths += 1
        
        # append padding (zeros) and then convert first padding to eos
        x = torch.cat([x, torch.zeros(B, 1, x.size(-1), device=x.device, dtype=x.dtype)], dim=1)
        for i in range(B):
            x[i, lengths[i], :] = self.eos_emb
        lengths += 1
        
        padding_mask = lengths_to_padding_mask(lengths)

        x = x * self.scale
            
        return x, padding_mask


class PositionalEmbedding(nn.Module):
    def __init__(self, num_embeddings, embedding_dim, padding_idx):
        super().__init__()
        self.embedding_dim = embedding_dim
        self.padding_idx = padding_idx if padding_idx is not None else 0
        num_embeddings += padding_idx + 1
        self.weights = PositionalEmbedding.get_embedding(
            num_embeddings, embedding_dim, padding_idx
        )
        self.register_buffer("_float_tensor", torch.FloatTensor(1))
        self.max_positions = int(1e5)

    @staticmethod
    def get_embedding(
        num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None
    ):
        half_dim = embedding_dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
        emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
        if embedding_dim % 2 == 1:
            # zero pad
            emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
        if padding_idx is not None:
            emb[padding_idx, :] = 0
        return emb

    def make_positions(self, x, padding_idx: int):
        mask = x.ne(padding_idx).int()
        return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx

    def forward(self, input):
        """Input is expected to be of size [bsz x seqlen]."""
        bsz, seq_len = input.size()
        max_pos = self.padding_idx + 1 + seq_len
        if self.weights is None or max_pos > self.weights.size(0):
            # recompute/expand embeddings if needed
            self.weights = PositionalEmbedding.get_embedding(
                max_pos, self.embedding_dim, self.padding_idx
            )
        self.weights = self.weights.to(self._float_tensor)
        positions = self.make_positions(input, self.padding_idx)
        return (
            self.weights.index_select(0, positions.view(-1))
            .view(bsz, seq_len, -1)
            .detach()
        )
    

class CLSPooling(nn.Module):
    def __init__(self, embed_dim, num_transformer_layers, dropout_rate):
        super().__init__()

        self.cls_token = nn.Parameter(torch.empty(1, 1, embed_dim))
        nn.init.normal_(self.cls_token, mean=0.0, std=0.25)

        self.transformer = nn.TransformerEncoder(
            nn.TransformerEncoderLayer(
                embed_dim,
                nhead=16 if embed_dim == 1024 else 8,
                dim_feedforward=4*embed_dim,
                dropout=dropout_rate,
                activation="relu",
                batch_first=True,
                norm_first=True
            ),
            num_layers=num_transformer_layers,
        )
    
        self.pos_emb = PositionalEmbedding(512, embed_dim, 1)
        self.scale = math.sqrt(embed_dim)

    def forward(self, x, lens):
        # x: [B, N, D]
        # lens: [B]

        # prepend cls token
        x = torch.cat(
            [
                self.cls_token.to(dtype=x.dtype, device=x.device).repeat(x.size(0), 1, 1), # B x 1 x D
                x
            ],
        dim=1) # [B, N+1, D]
        
        mask = lengths_to_padding_mask(lens+1)

        x = x + self.pos_emb(mask.long()) / self.scale
        
        x = self.transformer(x, src_key_padding_mask=mask) # [B, N+1, D]
        x = x[:, 0] # [B, D]
        return x


class CompressionAdapter(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.embed_dim = cfg["embed_dim"]
        self.transformer_layers = cfg["transformer_layers"]
        self.dropout = cfg["dropout"]
        self.blank_idx = cfg["blank_idx"]
        self.sep_idx = cfg["sep_idx"]

        self.token_pooling_module = CLSPooling(
            self.embed_dim, self.transformer_layers, self.dropout
        )

    def char_compression(self, x, preds, lens):
        # x: B x T x D
        # preds: B x T
        # lens: B
        
        B, T, D = x.size()
        device = x.device
        dtype = x.dtype
        
        # zero-out the padding
        mask = lengths_to_padding_mask(lens) # B x T
        x = x.masked_fill(mask.unsqueeze(-1), 0)
        preds = preds.masked_fill(mask, self.blank_idx)

        # add a vector of -1 to know where each example ends after flattening the batch
        preds = torch.cat([-torch.ones(B, 1, device=device, dtype=torch.long), preds], dim=1).view(-1)
        x = torch.cat([torch.zeros(B, 1, D, device=device, dtype=dtype), x], dim=1).view(-1, D)

        # get points of consecutive preds
        preds, counts = preds.unique_consecutive(return_counts=True)
        
        # split in representations of same chars
        x = torch.split(x, counts.tolist())
        
        # remove blanks
        valid_mask = preds != self.blank_idx
        preds = preds[valid_mask]
        counts = counts[valid_mask] # [N]
        x = [x_i for x_i, v_i in zip(x, valid_mask) if v_i]
        
        # pack into tensor
        x = pad_sequence(x, batch_first=True, padding_value=0)
        
        # char pooling
        x = torch.sum(x, dim=1) / counts.to(dtype=x.dtype).unsqueeze(1) # [B, N, D] -> [B, D]

        # find split points for retrieving the examples
        split_points = (preds == -1).nonzero(as_tuple=True)[0]
        split_points = torch.cat([split_points, torch.tensor([len(preds)], device=device)])
        split_points = (split_points[1:] - split_points[:-1]).tolist()

        # split into examples
        x = torch.split(x, split_points)
        preds = torch.split(preds, split_points)
        lens = torch.tensor([len(x_i) for x_i in x], device=device)

        # pack into tensors
        x = pad_sequence(x, batch_first=True, padding_value=0)
        preds = pad_sequence(preds, batch_first=True, padding_value=self.blank_idx)

        # remove the parts we add to identify the bounds for each example
        x = x[:, 1:]
        preds = preds[:, 1:]
        lens -= 1

        mask = lengths_to_padding_mask(lens)
        
        # account for empty examples (just a sep token)
        empty_examples = lens == 0
        num_empty_examples = empty_examples.sum()
        if num_empty_examples > 0:
            mask[empty_examples, 0] = True
            lens[empty_examples] = 1
            preds[empty_examples, 0] = self.sep_idx
        
        return x, mask, lens, preds, num_empty_examples

    def token_compression(self, x, preds, lens):
        # x: B x T x D
        # preds: B x T
        # lens: B
        
        B, T, D = x.size()
        device = x.device
        dtype = x.dtype
        
        # new lengths after compression
        new_lens = preds.eq(self.sep_idx).sum(dim=1)
        
        # unpad and unpack to list of tensors
        preds = [preds[i, :lens[i]] for i in range(B)]
        x = [x[i, :lens[i]] for i in range(B)]
        
        # make sure every example ends with a separator
        num_examples_without_ending_sep = torch.tensor(0, device=device, dtype=torch.long)
        for i in range(B):
            if preds[i][-1] != self.sep_idx:
                preds[i] = torch.cat([preds[i], torch.tensor([self.sep_idx], device=device, dtype=torch.long)])
                x[i] = torch.cat([x[i], torch.zeros(1, D, device=device, dtype=dtype)])
                new_lens[i] += 1
                num_examples_without_ending_sep += 1
        
        # flatten
        preds = torch.cat(preds)
        x = torch.cat(x)
        
        # split points according to separators
        split_points = preds.eq(self.sep_idx).nonzero(as_tuple=True)[0] + 1
        split_points = torch.cat([torch.tensor([0], device=device, dtype=torch.long), split_points])
        split_points = (split_points[1:] - split_points[:-1]).tolist()
        
        # re-arrange in 3d [total_num_tokens x max(count) x D]
        x = torch.split(x, split_points) # Tuple[2d tensor]

        counts = torch.tensor([len(x_i) for x_i in x], device=device, dtype=torch.long)
        x = pad_sequence(x, batch_first=True, padding_value=0)
        
        # reduce dim 1
        x = self.token_pooling_module(x, counts)
        
        # reconstruct the batch
        split_points = new_lens.cumsum(dim=0)
        split_points = torch.cat([torch.tensor([0], device=device, dtype=torch.long), split_points])
        split_points = (split_points[1:] - split_points[:-1]).tolist()
        x = torch.split(x, split_points)
        x = pad_sequence(x, batch_first=True, padding_value=0) # B x ? x D
        
        mask = lengths_to_padding_mask(new_lens)
        
        return x, mask, new_lens, num_examples_without_ending_sep  

    def forward(self, x, preds, lens):
        x, mask, lens, preds, _ = self.char_compression(x, preds, lens)
        x, mask, lens, _ = self.token_compression(x, preds, lens)
        return x, mask, lens