File size: 1,488 Bytes
633c829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
library_name: Doc-UFCN
license: mit
tags:
- Doc-UFCN
- PyTorch
- object-detection
- dla
- historical
- handwritten
metrics:
- IoU
- F1
- [email protected]
- [email protected]
- AP@[.5,.95]
pipeline_tag: image-segmentation
---


# Doc-UFCN - Generic Samaritan manuscripts line detection

The generic Samaritan manuscripts line detection model predicts text lines from document images.

## Model description

It has been trained on images with their largest dimension equal to 768 pixels, keeping the original aspect ratio.

## How to use?

Please refer to the Doc-UFCN library page (https://pypi.org/project/doc-ufcn/) to use this model.

## Cite us!

```bibtex
@inproceedings{boillet2022,
    author = {Boillet, Mélodie and Kermorvant, Christopher and Paquet, Thierry},
    title = {{Robust Text Line Detection in Historical Documents: Learning and Evaluation Methods}},
    booktitle = {{International Journal on Document Analysis and Recognition (IJDAR)}},
    year = {2022},
    month = Mar,
    pages = {1433-2825},
    doi = {10.1007/s10032-022-00395-7}
}
```

```bibtex
@inproceedings{boillet2020,
    author = {Boillet, Mélodie and Kermorvant, Christopher and Paquet, Thierry},
    title = {{Multiple Document Datasets Pre-training Improves Text Line Detection With
              Deep Neural Networks}},
    booktitle = {2020 25th International Conference on Pattern Recognition (ICPR)},
    year = {2021},
    month = Jan,
    pages = {2134-2141},
    doi = {10.1109/ICPR48806.2021.9412447}
}
```