File size: 3,091 Bytes
480fc7d
 
 
 
 
 
 
 
 
 
 
 
196fa34
 
 
 
 
 
 
 
 
 
 
 
3d0f1f6
 
3a644f1
4292c8d
196fa34
 
4292c8d
 
 
 
 
 
 
 
 
 
 
 
 
196fa34
4292c8d
 
 
 
 
 
 
 
 
196fa34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f5f9fa
196fa34
 
 
 
 
 
 
 
 
 
 
 
 
1db545c
 
 
 
 
 
 
 
 
 
 
196fa34
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
language: en
license: apache-2.0
datasets:
- openwebtext
---

# DeCLUTR-base

## Model description

The "DeCLUTR-base" model from our paper: [DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations](https://arxiv.org/abs/2006.03659).

## Intended uses & limitations

The model is intended to be used as a universal sentence encoder, similar to [Google's Universal Sentence Encoder](https://tfhub.dev/google/universal-sentence-encoder/4) or [Sentence Transformers](https://github.com/UKPLab/sentence-transformers).

#### How to use

Please see [our repo](https://github.com/JohnGiorgi/DeCLUTR) for full details. A simple example is shown below.

##### With [SentenceTransformers](https://www.sbert.net/)

```python
from scipy.spatial.distance import cosine
from sentence_transformers import SentenceTransformer

# Load the model
model = SentenceTransformer("johngiorgi/declutr-base")

# Prepare some text to embed
texts = [
    "A smiling costumed woman is holding an umbrella.",
    "A happy woman in a fairy costume holds an umbrella.",
]

# Embed the text
embeddings = model.encode(texts)

# Compute a semantic similarity via the cosine distance
semantic_sim = 1 - cosine(embeddings[0], embeddings[1])
```

##### With 🤗 Transformers

```python
import torch
from scipy.spatial.distance import cosine
from transformers import AutoModel, AutoTokenizer

# Load the model
tokenizer = AutoTokenizer.from_pretrained("johngiorgi/declutr-base")
model = AutoModel.from_pretrained("johngiorgi/declutr-base")

# Prepare some text to embed
text = [
    "A smiling costumed woman is holding an umbrella.",
    "A happy woman in a fairy costume holds an umbrella.",
]
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")

# Embed the text
with torch.no_grad():
    sequence_output = model(**inputs)[0]

# Mean pool the token-level embeddings to get sentence-level embeddings
embeddings = torch.sum(
    sequence_output * inputs["attention_mask"].unsqueeze(-1), dim=1
) / torch.clamp(torch.sum(inputs["attention_mask"], dim=1, keepdims=True), min=1e-9)

# Compute a semantic similarity via the cosine distance
semantic_sim = 1 - cosine(embeddings[0], embeddings[1])
```

### BibTeX entry and citation info

```bibtex
@inproceedings{giorgi-etal-2021-declutr,
    title        = {{D}e{CLUTR}: Deep Contrastive Learning for Unsupervised Textual Representations},
    author       = {Giorgi, John  and Nitski, Osvald  and Wang, Bo  and Bader, Gary},
    year         = 2021,
    month        = aug,
    booktitle    = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)},
    publisher    = {Association for Computational Linguistics},
    address      = {Online},
    pages        = {879--895},
    doi          = {10.18653/v1/2021.acl-long.72},
    url          = {https://aclanthology.org/2021.acl-long.72}
}
```