File size: 3,886 Bytes
8034f42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499b8ea
5e6c676
499b8ea
8034f42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: barthez-deft-linguistique
  results:
  - task:
      name: Summarization
      type: summarization
    metrics:
    - name: Rouge1
      type: rouge
      value: 41.989
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# barthez-deft-linguistique

This model is a fine-tuned version of [moussaKam/barthez](https://huggingface.co/moussaKam/barthez) on an unknown dataset.

**Note**: this model is one of the preliminary experiments and it underperforms the models published in the paper (using [MBartHez](https://huggingface.co/moussaKam/mbarthez) and HAL/Wiki pre-training + copy mechanisms)

It achieves the following results on the evaluation set:
- Loss: 1.7596
- Rouge1: 41.989
- Rouge2: 22.4524
- Rougel: 32.7966
- Rougelsum: 32.7953
- Gen Len: 22.1549

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 3.0569        | 1.0   | 108  | 2.0282          | 31.6993 | 14.9483 | 25.5565 | 25.4379   | 18.3803 |
| 2.2892        | 2.0   | 216  | 1.8553          | 35.2563 | 18.019  | 28.3135 | 28.2927   | 18.507  |
| 1.9062        | 3.0   | 324  | 1.7696          | 37.4613 | 18.1488 | 28.9959 | 29.0134   | 19.5352 |
| 1.716         | 4.0   | 432  | 1.7641          | 37.6903 | 18.7496 | 30.1097 | 30.1027   | 18.9577 |
| 1.5722        | 5.0   | 540  | 1.7781          | 38.1013 | 19.8291 | 29.8142 | 29.802    | 19.169  |
| 1.4655        | 6.0   | 648  | 1.7661          | 38.3557 | 20.3309 | 30.5068 | 30.4728   | 19.3662 |
| 1.3507        | 7.0   | 756  | 1.7596          | 39.7409 | 20.2998 | 31.0849 | 31.1152   | 19.3944 |
| 1.2874        | 8.0   | 864  | 1.7706          | 37.7846 | 20.3457 | 30.6826 | 30.6321   | 19.4789 |
| 1.2641        | 9.0   | 972  | 1.7848          | 38.7421 | 19.5701 | 30.5798 | 30.6305   | 19.3944 |
| 1.1192        | 10.0  | 1080 | 1.8008          | 40.3313 | 20.3378 | 31.8325 | 31.8648   | 19.5493 |
| 1.0724        | 11.0  | 1188 | 1.8450          | 38.9612 | 20.5719 | 31.4496 | 31.3144   | 19.8592 |
| 1.0077        | 12.0  | 1296 | 1.8364          | 36.5997 | 18.46   | 29.1808 | 29.1705   | 19.7324 |
| 0.9362        | 13.0  | 1404 | 1.8677          | 38.0371 | 19.2321 | 30.3893 | 30.3926   | 19.6338 |
| 0.8868        | 14.0  | 1512 | 1.9154          | 36.4737 | 18.5314 | 29.325  | 29.3634   | 19.6479 |
| 0.8335        | 15.0  | 1620 | 1.9344          | 35.7583 | 18.0687 | 27.9666 | 27.8675   | 19.8028 |
| 0.8305        | 16.0  | 1728 | 1.9556          | 37.2137 | 18.2199 | 29.5959 | 29.5799   | 19.9577 |
| 0.8057        | 17.0  | 1836 | 1.9793          | 36.6834 | 17.8505 | 28.6701 | 28.7145   | 19.7324 |
| 0.7869        | 18.0  | 1944 | 1.9994          | 37.5918 | 19.1984 | 28.8569 | 28.8278   | 19.7606 |
| 0.7549        | 19.0  | 2052 | 2.0117          | 37.3278 | 18.5169 | 28.778  | 28.7737   | 19.8028 |
| 0.7497        | 20.0  | 2160 | 2.0189          | 37.7513 | 19.1813 | 29.3675 | 29.402    | 19.6901 |


### Framework versions

- Transformers 4.10.2
- Pytorch 1.7.1+cu110
- Datasets 1.11.0
- Tokenizers 0.10.3