File size: 1,907 Bytes
841bbde 02db7ec 841bbde 4509e78 841bbde 4509e78 841bbde 4509e78 841bbde 4509e78 841bbde 4509e78 841bbde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
tags:
- summarization
metrics:
- rouge
model-index:
- name: POCTS
results:
- task:
name: Summarization
type: summarization
metrics:
- name: Rouge1
type: rouge
value: 26.1391
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# POCTS
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0970
- Rouge1: 26.1391
- Rouge2: 7.3101
- Rougel: 19.1217
- Rougelsum: 21.9706
- Gen Len: 46.2245
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 3.3259 | 1.0 | 33875 | 3.2535 | 17.942 | 4.5143 | 14.2766 | 15.582 | 19.3901 |
| 2.9764 | 2.0 | 67750 | 3.1278 | 18.6558 | 5.1844 | 15.0939 | 16.3367 | 19.9174 |
| 2.5889 | 3.0 | 101625 | 3.0970 | 19.1763 | 5.4517 | 15.5342 | 16.7186 | 19.8855 |
### Framework versions
- Transformers 4.10.2
- Pytorch 1.7.1+cu110
- Datasets 1.11.0
- Tokenizers 0.10.3
|