File size: 7,063 Bytes
1df7cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6df8425
 
 
 
 
 
 
 
1df7cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed1a84c
1df7cbe
 
 
6df8425
 
 
 
 
 
 
 
 
 
 
 
1df7cbe
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6510
- Answer: {'precision': 0.7025527192008879, 'recall': 0.7824474660074165, 'f1': 0.7403508771929823, 'number': 809}
- Header: {'precision': 0.28421052631578947, 'recall': 0.226890756302521, 'f1': 0.25233644859813087, 'number': 119}
- Question: {'precision': 0.7480916030534351, 'recall': 0.828169014084507, 'f1': 0.7860962566844921, 'number': 1065}
- Overall Precision: 0.7090
- Overall Recall: 0.7737
- Overall F1: 0.7399
- Overall Accuracy: 0.8032

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                        | Header                                                                                                        | Question                                                                                                    | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.7428        | 1.0   | 10   | 1.5458          | {'precision': 0.030690537084398978, 'recall': 0.04449938195302843, 'f1': 0.036326942482341064, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                   | {'precision': 0.18740157480314962, 'recall': 0.22347417840375586, 'f1': 0.2038543897216274, 'number': 1065} | 0.1122            | 0.1375         | 0.1235     | 0.4326           |
| 1.3991        | 2.0   | 20   | 1.2229          | {'precision': 0.1326676176890157, 'recall': 0.11495673671199011, 'f1': 0.12317880794701987, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                   | {'precision': 0.5, 'recall': 0.5352112676056338, 'f1': 0.5170068027210885, 'number': 1065}                  | 0.3597            | 0.3327         | 0.3457     | 0.5731           |
| 1.0911        | 3.0   | 30   | 0.9391          | {'precision': 0.47231638418079097, 'recall': 0.5166872682323856, 'f1': 0.4935064935064935, 'number': 809}     | {'precision': 0.058823529411764705, 'recall': 0.01680672268907563, 'f1': 0.026143790849673203, 'number': 119} | {'precision': 0.6528268551236749, 'recall': 0.6938967136150235, 'f1': 0.6727355484751935, 'number': 1065}   | 0.5651            | 0.5815         | 0.5732     | 0.7183           |
| 0.8461        | 4.0   | 40   | 0.7784          | {'precision': 0.6047717842323651, 'recall': 0.7206427688504327, 'f1': 0.6576424139875917, 'number': 809}      | {'precision': 0.15384615384615385, 'recall': 0.06722689075630252, 'f1': 0.0935672514619883, 'number': 119}    | {'precision': 0.6666666666666666, 'recall': 0.7455399061032864, 'f1': 0.7039007092198581, 'number': 1065}   | 0.6275            | 0.6949         | 0.6595     | 0.7638           |
| 0.6966        | 5.0   | 50   | 0.7307          | {'precision': 0.6315228966986155, 'recall': 0.7330037082818294, 'f1': 0.6784897025171623, 'number': 809}      | {'precision': 0.21052631578947367, 'recall': 0.13445378151260504, 'f1': 0.1641025641025641, 'number': 119}    | {'precision': 0.6925064599483204, 'recall': 0.7549295774647887, 'f1': 0.7223719676549865, 'number': 1065}   | 0.6494            | 0.7090         | 0.6779     | 0.7703           |
| 0.6037        | 6.0   | 60   | 0.6834          | {'precision': 0.657922350472193, 'recall': 0.7750309023485785, 'f1': 0.7116912599318955, 'number': 809}       | {'precision': 0.3150684931506849, 'recall': 0.19327731092436976, 'f1': 0.23958333333333334, 'number': 119}    | {'precision': 0.7021103896103896, 'recall': 0.812206572769953, 'f1': 0.7531562908141053, 'number': 1065}    | 0.6709            | 0.7602         | 0.7128     | 0.7915           |
| 0.5421        | 7.0   | 70   | 0.6692          | {'precision': 0.671306209850107, 'recall': 0.7750309023485785, 'f1': 0.7194492254733217, 'number': 809}       | {'precision': 0.2823529411764706, 'recall': 0.20168067226890757, 'f1': 0.23529411764705882, 'number': 119}    | {'precision': 0.7227467811158799, 'recall': 0.7906103286384977, 'f1': 0.7551569506726458, 'number': 1065}   | 0.6836            | 0.7491         | 0.7149     | 0.7931           |
| 0.5085        | 8.0   | 80   | 0.6549          | {'precision': 0.6901874310915105, 'recall': 0.7737948084054388, 'f1': 0.7296037296037297, 'number': 809}      | {'precision': 0.3023255813953488, 'recall': 0.2184873949579832, 'f1': 0.25365853658536586, 'number': 119}     | {'precision': 0.7408637873754153, 'recall': 0.8375586854460094, 'f1': 0.7862494490965183, 'number': 1065}   | 0.7028            | 0.7747         | 0.7370     | 0.7982           |
| 0.4692        | 9.0   | 90   | 0.6517          | {'precision': 0.6973684210526315, 'recall': 0.7861557478368356, 'f1': 0.7391051714119697, 'number': 809}      | {'precision': 0.2903225806451613, 'recall': 0.226890756302521, 'f1': 0.25471698113207547, 'number': 119}      | {'precision': 0.7534364261168385, 'recall': 0.8234741784037559, 'f1': 0.7868999551368328, 'number': 1065}   | 0.7100            | 0.7727         | 0.7400     | 0.8025           |
| 0.4538        | 10.0  | 100  | 0.6510          | {'precision': 0.7025527192008879, 'recall': 0.7824474660074165, 'f1': 0.7403508771929823, 'number': 809}      | {'precision': 0.28421052631578947, 'recall': 0.226890756302521, 'f1': 0.25233644859813087, 'number': 119}     | {'precision': 0.7480916030534351, 'recall': 0.828169014084507, 'f1': 0.7860962566844921, 'number': 1065}    | 0.7090            | 0.7737         | 0.7399     | 0.8032           |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3