Model Card for trained_ppo_model

This model is a fine-tuned version of None. It has been trained using TRL.

Quick start

from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="joaoluislins/trained_ppo_model", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])

Training procedure

Visualize in Weights & Biases

This model was trained with PPO, a method introduced in Fine-Tuning Language Models from Human Preferences.

Framework versions

  • TRL: 0.13.0
  • Transformers: 4.46.2
  • Pytorch: 2.5.1
  • Datasets: 3.2.0
  • Tokenizers: 0.20.3

Citations

Cite PPO as:

@article{mziegler2019fine-tuning,
    title        = {{Fine-Tuning Language Models from Human Preferences}},
    author       = {Daniel M. Ziegler and Nisan Stiennon and Jeffrey Wu and Tom B. Brown and Alec Radford and Dario Amodei and Paul F. Christiano and Geoffrey Irving},
    year         = 2019,
    eprint       = {arXiv:1909.08593}
}

Cite TRL as:

@misc{vonwerra2022trl,
    title        = {{TRL: Transformer Reinforcement Learning}},
    author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou茅dec},
    year         = 2020,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/huggingface/trl}}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Safetensors
Model size
13B params
Tensor type
F32
BF16
U8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model鈥檚 pipeline type.