File size: 12,747 Bytes
30df0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "e13eff4e-c134-4dac-9523-07b297164250",
   "metadata": {},
   "source": [
    "# Example of Fine-tuning 176 billion Bloom with 8-bit weights\n",
    "\n",
    "This notebook shows an example of how to fine tune Bloom with Low Rank Adapters. Heavily inspired by [Hivemind's work](https://colab.research.google.com/drive/1ft6wQU0BhqG5PRlwgaZJv2VukKKjU4Es)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "699e94eb-3ce1-4788-999b-fb6d593ba7e9",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install transformers==4.20.1\n",
    "!pip install bitsandbytes-cuda110\n",
    "!pip install datasets"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0afea72c-691d-4719-a84a-663f1891af6e",
   "metadata": {},
   "source": [
    "### Load and convert original Bloom structure to 8-bit LoRA\n",
    "\n",
    "You can load an already compressed 8-bit version of Bloom from [joaoalvarenga/bloom-8bit](https://huggingface.co/joaoalvarenga/bloom-8bit), but first we need to make some adaptations into original model structure. Some of the following code is an adaptation from [Hivemind's GPT-J 8-bit fine-tuning notebook](https://colab.research.google.com/drive/1ft6wQU0BhqG5PRlwgaZJv2VukKKjU4Es)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aa5f4118-d4d9-474f-ac36-acaadb920c1f",
   "metadata": {},
   "outputs": [],
   "source": [
    "import transformers\n",
    "\n",
    "import torch\n",
    "import torch.nn.functional as F\n",
    "from torch import nn\n",
    "from torch.cuda.amp import custom_fwd, custom_bwd\n",
    "\n",
    "from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise\n",
    "\n",
    "from tqdm.auto import tqdm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cc4f262e-70de-4a06-a5a6-52d1cd5223d3",
   "metadata": {},
   "outputs": [],
   "source": [
    "class FrozenBNBLinear(nn.Module):\n",
    "    def __init__(self, weight, absmax, code, bias=None):\n",
    "        assert isinstance(bias, nn.Parameter) or bias is None\n",
    "        super().__init__()\n",
    "        self.out_features, self.in_features = weight.shape\n",
    "        self.register_buffer(\"weight\", weight.requires_grad_(False))\n",
    "        self.register_buffer(\"absmax\", absmax.requires_grad_(False))\n",
    "        self.register_buffer(\"code\", code.requires_grad_(False))\n",
    "        self.adapter = None\n",
    "        self.bias = bias\n",
    " \n",
    "    def forward(self, input):\n",
    "        output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)\n",
    "        if self.adapter:\n",
    "            output += self.adapter(input)\n",
    "        return output\n",
    " \n",
    "    @classmethod\n",
    "    def from_linear(cls, linear: nn.Linear) -> \"FrozenBNBLinear\":\n",
    "        weights_int8, state = quantize_blockise_lowmemory(linear.weight)\n",
    "        return cls(weights_int8, *state, linear.bias)\n",
    " \n",
    "    def __repr__(self):\n",
    "        return f\"{self.__class__.__name__}({self.in_features}, {self.out_features})\"\n",
    " \n",
    " \n",
    "class DequantizeAndLinear(torch.autograd.Function): \n",
    "    @staticmethod\n",
    "    @custom_fwd\n",
    "    def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,\n",
    "                absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):\n",
    "        weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)\n",
    "        ctx.save_for_backward(input, weights_quantized, absmax, code)\n",
    "        ctx._has_bias = bias is not None\n",
    "        return F.linear(input, weights_deq, bias)\n",
    " \n",
    "    @staticmethod\n",
    "    @custom_bwd\n",
    "    def backward(ctx, grad_output: torch.Tensor):\n",
    "        assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]\n",
    "        input, weights_quantized, absmax, code = ctx.saved_tensors\n",
    "        # grad_output: [*batch, out_features]\n",
    "        weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)\n",
    "        grad_input = grad_output @ weights_deq\n",
    "        grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None\n",
    "        return grad_input, None, None, None, grad_bias\n",
    " \n",
    " \n",
    "class FrozenBNBEmbedding(nn.Module):\n",
    "    def __init__(self, weight, absmax, code):\n",
    "        super().__init__()\n",
    "        self.num_embeddings, self.embedding_dim = weight.shape\n",
    "        self.register_buffer(\"weight\", weight.requires_grad_(False))\n",
    "        self.register_buffer(\"absmax\", absmax.requires_grad_(False))\n",
    "        self.register_buffer(\"code\", code.requires_grad_(False))\n",
    "        self.adapter = None\n",
    " \n",
    "    def forward(self, input, **kwargs):\n",
    "        with torch.no_grad():\n",
    "            # note: both quantuized weights and input indices are *not* differentiable\n",
    "            weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)\n",
    "            output = F.embedding(input, weight_deq, **kwargs)\n",
    "        if self.adapter:\n",
    "            output += self.adapter(input)\n",
    "        return output \n",
    " \n",
    "    @classmethod\n",
    "    def from_embedding(cls, embedding: nn.Embedding) -> \"FrozenBNBEmbedding\":\n",
    "        weights_int8, state = quantize_blockise_lowmemory(embedding.weight)\n",
    "        return cls(weights_int8, *state)\n",
    " \n",
    "    def __repr__(self):\n",
    "        return f\"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})\"\n",
    " \n",
    " \n",
    "def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):\n",
    "    assert chunk_size % 4096 == 0\n",
    "    code = None\n",
    "    chunks = []\n",
    "    absmaxes = []\n",
    "    flat_tensor = matrix.view(-1)\n",
    "    for i in range((matrix.numel() - 1) // chunk_size + 1):\n",
    "        input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()\n",
    "        quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)\n",
    "        chunks.append(quantized_chunk)\n",
    "        absmaxes.append(absmax_chunk)\n",
    " \n",
    "    matrix_i8 = torch.cat(chunks).reshape_as(matrix)\n",
    "    absmax = torch.cat(absmaxes)\n",
    "    return matrix_i8, (absmax, code)\n",
    "\n",
    "\n",
    "def convert_to_int8(model):\n",
    "    \"\"\"Convert linear and embedding modules to 8-bit with optional adapters\"\"\"\n",
    "    for module in list(model.modules()):\n",
    "        for name, child in module.named_children():\n",
    "            if isinstance(child, nn.Linear):\n",
    "                print(name, child)\n",
    "                setattr( \n",
    "                    module,\n",
    "                    name,\n",
    "                    FrozenBNBLinear(\n",
    "                        weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8),\n",
    "                        absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),\n",
    "                        code=torch.zeros(256),\n",
    "                        bias=child.bias,\n",
    "                    ),\n",
    "                )\n",
    "            elif isinstance(child, nn.Embedding):\n",
    "                setattr(\n",
    "                    module,\n",
    "                    name,\n",
    "                    FrozenBNBEmbedding(\n",
    "                        weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8),\n",
    "                        absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),\n",
    "                        code=torch.zeros(256),\n",
    "                    )\n",
    "                )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f4673d4c-0f4e-482e-ac04-b7389397af6e",
   "metadata": {},
   "outputs": [],
   "source": [
    "class BloomBlock(transformers.models.bloom.modeling_bloom.BloomBlock):\n",
    "    def __init__(self, config, layer_number=None):\n",
    "        super().__init__(config, layer_number)\n",
    "\n",
    "        convert_to_int8(self.self_attention)\n",
    "        convert_to_int8(self.mlp)\n",
    "\n",
    "\n",
    "class BloomModel(transformers.models.bloom.modeling_bloom.BloomModel):\n",
    "    def __init__(self, config):\n",
    "        super().__init__(config)\n",
    "        convert_to_int8(self)\n",
    "        \n",
    "\n",
    "class BloomForCausalLM(transformers.models.bloom.modeling_bloom.BloomForCausalLM):\n",
    "    def __init__(self, config):\n",
    "        super().__init__(config)\n",
    "        convert_to_int8(self)\n",
    "        \n",
    "transformers.models.bloom.modeling_bloom.BloomBlock = BloomBlock"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "eca11b11-9b0b-4958-89f4-401f7a2cac0e",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import BloomForCausalLM \n",
    "tokenizer = transformers.AutoTokenizer.from_pretrained('joaoalvarenga/bloom-8bit')\n",
    "device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
    "model = BloomForCausalLM.from_pretrained('joaoalvarenga/bloom-8bit', low_cpu_mem_usage=True)\n",
    "device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
    "model.to(device)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "82ea942b-7fcf-4bbc-adb9-be0bbd98b9f8",
   "metadata": {},
   "source": [
    "### Fine-tune and save model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "26cacf36-56f7-4f9c-b975-33dd34b1ff9c",
   "metadata": {},
   "outputs": [],
   "source": [
    "def add_adapters(model, adapter_dim=16):\n",
    "    assert adapter_dim > 0\n",
    "\n",
    "    for module in model.modules():\n",
    "        if isinstance(module, FrozenBNBLinear):\n",
    "            module.adapter = nn.Sequential(\n",
    "                nn.Linear(module.in_features, adapter_dim, bias=False),\n",
    "                nn.Linear(adapter_dim, module.out_features, bias=False),\n",
    "            )\n",
    "            nn.init.zeros_(module.adapter[1].weight)\n",
    "        elif isinstance(module, FrozenBNBEmbedding):\n",
    "            module.adapter = nn.Sequential(\n",
    "                nn.Embedding(module.num_embeddings, adapter_dim),\n",
    "                nn.Linear(adapter_dim, module.embedding_dim, bias=False),\n",
    "            )\n",
    "            nn.init.zeros_(module.adapter[1].weight)\n",
    "\n",
    "add_adapters(model)\n",
    "model.to(device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4e293eb3-979a-46d7-97b8-cde296f45da8",
   "metadata": {},
   "outputs": [],
   "source": [
    "from datasets import load_dataset\n",
    "from bitsandbytes.optim import Adam8bit\n",
    "\n",
    "model.gradient_checkpointing_enable()\n",
    "\n",
    "wikisql = load_dataset(\"wikisql\", streaming=True)\n",
    "optimizer = Adam8bit(model.parameters(), lr=1e-5)\n",
    "\n",
    "with torch.cuda.amp.autocast():\n",
    "    for row in tqdm(wikisql['train']):\n",
    "\n",
    "        batch = tokenizer(row['question'] + row['sql']['human_readable'], truncation=True, max_length=128, return_tensors='pt')\n",
    "        batch = {k: v.cuda() for k, v in batch.items()}\n",
    "\n",
    "        out = gpt.forward(**batch,)\n",
    "\n",
    "        loss = F.cross_entropy(out.logits[:, :-1, :].flatten(0, -2), batch['input_ids'][:, 1:].flatten(),\n",
    "                               reduction='mean')\n",
    "        print(loss)\n",
    "        loss.backward()\n",
    "\n",
    "        optimizer.step()\n",
    "        optimizer.zero_grad()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4e2251f6-1a5c-4193-b971-0840d6d59c32",
   "metadata": {},
   "outputs": [],
   "source": [
    "model.save_pretrained('bloom-8bit-fine-tuned')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}