Upload PPO LunarLander v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v1.zip +3 -0
- ppo-LunarLander-v1/_stable_baselines3_version +1 -0
- ppo-LunarLander-v1/data +94 -0
- ppo-LunarLander-v1/policy.optimizer.pth +3 -0
- ppo-LunarLander-v1/policy.pth +3 -0
- ppo-LunarLander-v1/pytorch_variables.pth +3 -0
- ppo-LunarLander-v1/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 267.30 +/- 18.25
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa5cd3478b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa5cd347940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa5cd3479d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa5cd347a60>", "_build": "<function ActorCriticPolicy._build at 0x7fa5cd347af0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa5cd347b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa5cd347c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa5cd347ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa5cd347d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa5cd347dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa5cd347e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa5cd345300>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670289206345582801, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoGnrwSH1I/TlaovDxwhb79FKK88wf6OwAAAAAAAAAAc3OcPkIPlD/QfIY9HFx6vqKOaD4FtHS9AAAAAAAAAABNTGW9w+EUug480L0cNG69diMOPGuatz4AAAAAAAAAAPrgSz6UG/g+WnW6vZXmfL6l21U9yG9wPQAAAAAAAAAAgFhgvo70nj/+8RK/0E8Pv0Mfq76h6jO+AAAAAAAAAADmqnw99qBcuvr6WzdEZ8YyJJwJO2IVf7YAAIA/AACAPwA9pjyudZu6LfWHvECHC7maoLW6wzB7OAAAgD8AAIA/ZtY2PcNleD8Q2+i82tSovqStpD2uk7K9AAAAAAAAAADazfw9D2vQPlycib4d2pC+AA23vZvWHL0AAAAAAAAAAJpfmr0el3w/whvyvSvaub6Kdoy9WiG0vQAAAAAAAAAAwzNTvosBYD8mZaE9/huYviZqaL3dz5i6AAAAAAAAAAAzrsG8pCWDP4sVwTwUhpe+D2+mvGIIXz0AAAAAAAAAAAAYFj3Z8iQ/lPExPTMzcb5MFRA9I9hCvQAAAAAAAAAA4NUmPiZVUD/YrWu+By+pvjHfLrw+l3C9AAAAAAAAAACanZo7w7VhukNnLLaA7qswQjgMu+T7SjUAAIA/AACAP2YQH7xIney6BK2ZuRvdvjua0E08sZC9vAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8YEd/wUbcUCUhpRSlIwBbJRNGAGMAXSUR0Cau9VUMoc8dX2UKGgGaAloD0MIvobguIy6b0CUhpRSlGgVTSgBaBZHQJrOkkxASnN1fZQoaAZoCWgPQwgRp5NsdZxWQJSGlFKUaBVN6ANoFkdAms8A9Net0XV9lChoBmgJaA9DCORojqz8D3FAlIaUUpRoFU1uAWgWR0Caz0/cFhXsdX2UKGgGaAloD0MIb/JbdLL6cECUhpRSlGgVTTMBaBZHQJrQ0ZBLPD51fZQoaAZoCWgPQwg/U69bxE5wQJSGlFKUaBVNaQFoFkdAmtGwctGutHV9lChoBmgJaA9DCO85sByhK3BAlIaUUpRoFU1NAWgWR0Ca0q433pOfdX2UKGgGaAloD0MIPL1SlqG+cECUhpRSlGgVTSEBaBZHQJrTFPtUn5V1fZQoaAZoCWgPQwhsdqT6zr1wQJSGlFKUaBVNIwFoFkdAmtMmvOhTO3V9lChoBmgJaA9DCBSxiGFHlnBAlIaUUpRoFUv3aBZHQJrTqe7L+xZ1fZQoaAZoCWgPQwh8Q+GzdYZUQJSGlFKUaBVN6ANoFkdAmtQCRjjJdXV9lChoBmgJaA9DCLQ+5Zjs63FAlIaUUpRoFU00AWgWR0Ca1hJC0F8pdX2UKGgGaAloD0MIBMb6BmaGcECUhpRSlGgVTU8BaBZHQJrWsWhysCF1fZQoaAZoCWgPQwgFbt3NU69wQJSGlFKUaBVNEgFoFkdAmtbD0xubZ3V9lChoBmgJaA9DCJFHcCPl+3FAlIaUUpRoFU0iAWgWR0Ca1uJkoWpIdX2UKGgGaAloD0MIV87eGW0fb0CUhpRSlGgVTSUBaBZHQJrXOrKeTV51fZQoaAZoCWgPQwiveVVnNWFyQJSGlFKUaBVNBwFoFkdAmtd+I2wV03V9lChoBmgJaA9DCFZinpU0qm5AlIaUUpRoFU0dAWgWR0Ca17vuw5eadX2UKGgGaAloD0MIbLOxEnOpcECUhpRSlGgVTTQBaBZHQJrYL5Lytmt1fZQoaAZoCWgPQwj6Jk2DophvQJSGlFKUaBVNUAFoFkdAmtnFqi48U3V9lChoBmgJaA9DCPPGSWEeDHFAlIaUUpRoFU06AWgWR0Ca2pmGucMFdX2UKGgGaAloD0MILSRgdHmZbUCUhpRSlGgVTRMBaBZHQJrbNqYZ2p11fZQoaAZoCWgPQwhsI57s5thtQJSGlFKUaBVNFQFoFkdAmtvEt29tdnV9lChoBmgJaA9DCH+8V63Mum9AlIaUUpRoFU1OAWgWR0Ca3CWLP2PDdX2UKGgGaAloD0MIeF4qNmaYcECUhpRSlGgVTSMBaBZHQJrcJrKvFFV1fZQoaAZoCWgPQwi9qrNa4KRtQJSGlFKUaBVNQgFoFkdAmt3DI7vG63V9lChoBmgJaA9DCPgzvFnDqHBAlIaUUpRoFU0MAWgWR0Ca3v3++/QCdX2UKGgGaAloD0MIiKHVyRkNcECUhpRSlGgVTVkBaBZHQJre//cWTHN1fZQoaAZoCWgPQwjDuYYZmghzQJSGlFKUaBVNAQFoFkdAmt99xuKoAHV9lChoBmgJaA9DCLnBUIcV1m9AlIaUUpRoFU0fAWgWR0Ca343GXHBDdX2UKGgGaAloD0MI0ZDxKBVcbUCUhpRSlGgVTSQBaBZHQJrf5WzWwvB1fZQoaAZoCWgPQwgIW+z2GTxyQJSGlFKUaBVNQAFoFkdAmuAInfEXL3V9lChoBmgJaA9DCE2DonmA6W9AlIaUUpRoFU0oAWgWR0Ca4ZJx//eddX2UKGgGaAloD0MIf2lRn6SUcUCUhpRSlGgVTTwBaBZHQJrhpXPqs2h1fZQoaAZoCWgPQwgQWaSJ99dwQJSGlFKUaBVNEwFoFkdAmuKb4i5d4XV9lChoBmgJaA9DCLVv7q8exHFAlIaUUpRoFU0nAWgWR0Ca5B3YcvM9dX2UKGgGaAloD0MIilqaW6GfcUCUhpRSlGgVTQ0BaBZHQJrkbNUwSJ11fZQoaAZoCWgPQwi5bHTOD6hwQJSGlFKUaBVNuQFoFkdAmuUJmNBF/nV9lChoBmgJaA9DCBHDDmPSdXBAlIaUUpRoFU1OAWgWR0Ca5j9CNS62dX2UKGgGaAloD0MIiesYV5xPcUCUhpRSlGgVTTMBaBZHQJrmS/SH/Ll1fZQoaAZoCWgPQwiDhv4JrsBwQJSGlFKUaBVNJwFoFkdAmuekOqebu3V9lChoBmgJaA9DCKUTCaYaRGxAlIaUUpRoFU1qAWgWR0Ca6EQxesxPdX2UKGgGaAloD0MINj/+0iJQcUCUhpRSlGgVTSABaBZHQJrooyTINmV1fZQoaAZoCWgPQwhVibK31KNyQJSGlFKUaBVNMgFoFkdAmunKoVEeAHV9lChoBmgJaA9DCAPPvYdLoXBAlIaUUpRoFU0yAWgWR0Ca6dzF+/g0dX2UKGgGaAloD0MIw0SDFHzAckCUhpRSlGgVTSQBaBZHQJrp4kgOjIt1fZQoaAZoCWgPQwjxoURLHvhuQJSGlFKUaBVNRwFoFkdAmun7vw3HaXV9lChoBmgJaA9DCJGcTNyqom5AlIaUUpRoFU0yAWgWR0Ca6i0e2d/bdX2UKGgGaAloD0MImiMrv4zecECUhpRSlGgVTS4BaBZHQJrrf5ZbILh1fZQoaAZoCWgPQwgmUprN45prQJSGlFKUaBVNKAFoFkdAmuyAuEmICXV9lChoBmgJaA9DCGzNVl7yTHFAlIaUUpRoFU1OAWgWR0Ca7KBCD28JdX2UKGgGaAloD0MIwf7r3PQXcUCUhpRSlGgVTSkBaBZHQJruA0cfeUJ1fZQoaAZoCWgPQwh0DTM0HpdwQJSGlFKUaBVNQQFoFkdAmu8cOCoS+XV9lChoBmgJaA9DCCNpN/qYn21AlIaUUpRoFU0ZAWgWR0Ca72eSjgyedX2UKGgGaAloD0MIdXKG4k4sckCUhpRSlGgVTSoBaBZHQJsFU4YJmd11fZQoaAZoCWgPQwhfJR+7C+5sQJSGlFKUaBVNNwFoFkdAmwVpTAFgUnV9lChoBmgJaA9DCMpv0ckSXHJAlIaUUpRoFU0UAWgWR0CbBlZUDMePdX2UKGgGaAloD0MIml33VmSpcECUhpRSlGgVTbgBaBZHQJsHIsmOU+t1fZQoaAZoCWgPQwgCt+7mKQluQJSGlFKUaBVNOgFoFkdAmwd6UiY9gXV9lChoBmgJaA9DCC140VcQrXBAlIaUUpRoFUv2aBZHQJsIVcE/0NB1fZQoaAZoCWgPQwiGcw0zdENwQJSGlFKUaBVNkwFoFkdAmwiQQUYbbXV9lChoBmgJaA9DCNwvn6yYRXBAlIaUUpRoFU3CAWgWR0CbCONAkcCHdX2UKGgGaAloD0MIQ8u6fyyEckCUhpRSlGgVTWIBaBZHQJsI+9TP0I11fZQoaAZoCWgPQwj3Ax4YgO1wQJSGlFKUaBVNgwFoFkdAmwocbrC3w3V9lChoBmgJaA9DCHnm5bD70k1AlIaUUpRoFUufaBZHQJsLSavzOHF1fZQoaAZoCWgPQwhuoSsRaCxwQJSGlFKUaBVNxAFoFkdAmwyRW1c+q3V9lChoBmgJaA9DCOYeEr73cFJAlIaUUpRoFUvUaBZHQJsNTKW9lEt1fZQoaAZoCWgPQwhTknU4OttuQJSGlFKUaBVNVQFoFkdAmw1U8ifQKXV9lChoBmgJaA9DCD9uv3yyaE5AlIaUUpRoFUvIaBZHQJsNn+BH09R1fZQoaAZoCWgPQwiES8ecJ11xQJSGlFKUaBVNmQFoFkdAmw4hm5DqnnV9lChoBmgJaA9DCLiU88We+nBAlIaUUpRoFU1FAWgWR0CbDi8AJb+tdX2UKGgGaAloD0MIXmdD/hlicUCUhpRSlGgVTcsBaBZHQJsOkEJSiud1fZQoaAZoCWgPQwimgLT/AUdvQJSGlFKUaBVNCwFoFkdAmxAzyJ9Ao3V9lChoBmgJaA9DCK5H4XpUI3FAlIaUUpRoFU09AWgWR0CbE87cO9WZdX2UKGgGaAloD0MISx3k9WDKb0CUhpRSlGgVTXYBaBZHQJsWS39aUzN1fZQoaAZoCWgPQwg9ghspmwZxQJSGlFKUaBVNWQFoFkdAmxayuhbno3V9lChoBmgJaA9DCPynGyjwR3BAlIaUUpRoFU1CAWgWR0CbF09GI9DAdX2UKGgGaAloD0MI9+rjoe+ObUCUhpRSlGgVTTQBaBZHQJsZKgHu7Yl1fZQoaAZoCWgPQwje5o2TAphxQJSGlFKUaBVNOQFoFkdAmxqSAc1fmnV9lChoBmgJaA9DCByastPPIHFAlIaUUpRoFU2PAmgWR0CbGvEr5IpZdX2UKGgGaAloD0MIc51GWmpYcECUhpRSlGgVTfgBaBZHQJsbvjNpudh1fZQoaAZoCWgPQwiBs5QsJ+VyQJSGlFKUaBVNbQFoFkdAmxwM0Ltu1nV9lChoBmgJaA9DCDoF+dkIL3BAlIaUUpRoFU2NAWgWR0CbHBjua4MGdX2UKGgGaAloD0MIgIEgQAbocUCUhpRSlGgVTXgBaBZHQJsdBkiD/VB1fZQoaAZoCWgPQwj5hVeSPNpvQJSGlFKUaBVNhAFoFkdAmx38QZn+Q3V9lChoBmgJaA9DCHJRLSIKlGxAlIaUUpRoFU3GAWgWR0CbHtNAkcCHdX2UKGgGaAloD0MIdHtJY3TwcUCUhpRSlGgVTXMCaBZHQJsfJjG1hLJ1fZQoaAZoCWgPQwhtV+iDJYJxQJSGlFKUaBVNdgFoFkdAmx9QwGnn+3V9lChoBmgJaA9DCKq3BrbKK3JAlIaUUpRoFU1uAmgWR0CbH5eQuEmIdX2UKGgGaAloD0MI4/4j0yGxc0CUhpRSlGgVTWABaBZHQJshlJEpiJB1fZQoaAZoCWgPQwi77UJz3ZNxQJSGlFKUaBVNNwFoFkdAmyLR5s0pE3V9lChoBmgJaA9DCAn84ee/DnNAlIaUUpRoFU0fAWgWR0CbI3R7JGONdX2UKGgGaAloD0MIYrt7gG6CcECUhpRSlGgVTRoBaBZHQJskZLYf4h51fZQoaAZoCWgPQwjWx0PfnedwQJSGlFKUaBVL/WgWR0CbJKhew9q2dX2UKGgGaAloD0MIPGh23VtccECUhpRSlGgVTSsBaBZHQJslUJVsDW91fZQoaAZoCWgPQwjjxFc7SktxQJSGlFKUaBVNIgFoFkdAmyWo/Z/Tb3V9lChoBmgJaA9DCKddTDNdkHBAlIaUUpRoFU2XAWgWR0CbJdF8G9pRdX2UKGgGaAloD0MIh+EjYsogbUCUhpRSlGgVTRMBaBZHQJsmNXOnl4l1fZQoaAZoCWgPQwgRp5Ns9ZJvQJSGlFKUaBVNsQFoFkdAmyZKxHG0eHV9lChoBmgJaA9DCMS12sMeknJAlIaUUpRoFU0/AWgWR0CbJqkN4JNTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa986d85d8cfc4788ffe18cef967dbb5f4f11120750837ee481e16c0c69d4255
|
3 |
+
size 147146
|
ppo-LunarLander-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa5cd3478b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa5cd347940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa5cd3479d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa5cd347a60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa5cd347af0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa5cd347b80>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa5cd347c10>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa5cd347ca0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa5cd347d30>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa5cd347dc0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa5cd347e50>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fa5cd345300>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670289206345582801,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoGnrwSH1I/TlaovDxwhb79FKK88wf6OwAAAAAAAAAAc3OcPkIPlD/QfIY9HFx6vqKOaD4FtHS9AAAAAAAAAABNTGW9w+EUug480L0cNG69diMOPGuatz4AAAAAAAAAAPrgSz6UG/g+WnW6vZXmfL6l21U9yG9wPQAAAAAAAAAAgFhgvo70nj/+8RK/0E8Pv0Mfq76h6jO+AAAAAAAAAADmqnw99qBcuvr6WzdEZ8YyJJwJO2IVf7YAAIA/AACAPwA9pjyudZu6LfWHvECHC7maoLW6wzB7OAAAgD8AAIA/ZtY2PcNleD8Q2+i82tSovqStpD2uk7K9AAAAAAAAAADazfw9D2vQPlycib4d2pC+AA23vZvWHL0AAAAAAAAAAJpfmr0el3w/whvyvSvaub6Kdoy9WiG0vQAAAAAAAAAAwzNTvosBYD8mZaE9/huYviZqaL3dz5i6AAAAAAAAAAAzrsG8pCWDP4sVwTwUhpe+D2+mvGIIXz0AAAAAAAAAAAAYFj3Z8iQ/lPExPTMzcb5MFRA9I9hCvQAAAAAAAAAA4NUmPiZVUD/YrWu+By+pvjHfLrw+l3C9AAAAAAAAAACanZo7w7VhukNnLLaA7qswQjgMu+T7SjUAAIA/AACAP2YQH7xIney6BK2ZuRvdvjua0E08sZC9vAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8YEd/wUbcUCUhpRSlIwBbJRNGAGMAXSUR0Cau9VUMoc8dX2UKGgGaAloD0MIvobguIy6b0CUhpRSlGgVTSgBaBZHQJrOkkxASnN1fZQoaAZoCWgPQwgRp5NsdZxWQJSGlFKUaBVN6ANoFkdAms8A9Net0XV9lChoBmgJaA9DCORojqz8D3FAlIaUUpRoFU1uAWgWR0Caz0/cFhXsdX2UKGgGaAloD0MIb/JbdLL6cECUhpRSlGgVTTMBaBZHQJrQ0ZBLPD51fZQoaAZoCWgPQwg/U69bxE5wQJSGlFKUaBVNaQFoFkdAmtGwctGutHV9lChoBmgJaA9DCO85sByhK3BAlIaUUpRoFU1NAWgWR0Ca0q433pOfdX2UKGgGaAloD0MIPL1SlqG+cECUhpRSlGgVTSEBaBZHQJrTFPtUn5V1fZQoaAZoCWgPQwhsdqT6zr1wQJSGlFKUaBVNIwFoFkdAmtMmvOhTO3V9lChoBmgJaA9DCBSxiGFHlnBAlIaUUpRoFUv3aBZHQJrTqe7L+xZ1fZQoaAZoCWgPQwh8Q+GzdYZUQJSGlFKUaBVN6ANoFkdAmtQCRjjJdXV9lChoBmgJaA9DCLQ+5Zjs63FAlIaUUpRoFU00AWgWR0Ca1hJC0F8pdX2UKGgGaAloD0MIBMb6BmaGcECUhpRSlGgVTU8BaBZHQJrWsWhysCF1fZQoaAZoCWgPQwgFbt3NU69wQJSGlFKUaBVNEgFoFkdAmtbD0xubZ3V9lChoBmgJaA9DCJFHcCPl+3FAlIaUUpRoFU0iAWgWR0Ca1uJkoWpIdX2UKGgGaAloD0MIV87eGW0fb0CUhpRSlGgVTSUBaBZHQJrXOrKeTV51fZQoaAZoCWgPQwiveVVnNWFyQJSGlFKUaBVNBwFoFkdAmtd+I2wV03V9lChoBmgJaA9DCFZinpU0qm5AlIaUUpRoFU0dAWgWR0Ca17vuw5eadX2UKGgGaAloD0MIbLOxEnOpcECUhpRSlGgVTTQBaBZHQJrYL5Lytmt1fZQoaAZoCWgPQwj6Jk2DophvQJSGlFKUaBVNUAFoFkdAmtnFqi48U3V9lChoBmgJaA9DCPPGSWEeDHFAlIaUUpRoFU06AWgWR0Ca2pmGucMFdX2UKGgGaAloD0MILSRgdHmZbUCUhpRSlGgVTRMBaBZHQJrbNqYZ2p11fZQoaAZoCWgPQwhsI57s5thtQJSGlFKUaBVNFQFoFkdAmtvEt29tdnV9lChoBmgJaA9DCH+8V63Mum9AlIaUUpRoFU1OAWgWR0Ca3CWLP2PDdX2UKGgGaAloD0MIeF4qNmaYcECUhpRSlGgVTSMBaBZHQJrcJrKvFFV1fZQoaAZoCWgPQwi9qrNa4KRtQJSGlFKUaBVNQgFoFkdAmt3DI7vG63V9lChoBmgJaA9DCPgzvFnDqHBAlIaUUpRoFU0MAWgWR0Ca3v3++/QCdX2UKGgGaAloD0MIiKHVyRkNcECUhpRSlGgVTVkBaBZHQJre//cWTHN1fZQoaAZoCWgPQwjDuYYZmghzQJSGlFKUaBVNAQFoFkdAmt99xuKoAHV9lChoBmgJaA9DCLnBUIcV1m9AlIaUUpRoFU0fAWgWR0Ca343GXHBDdX2UKGgGaAloD0MI0ZDxKBVcbUCUhpRSlGgVTSQBaBZHQJrf5WzWwvB1fZQoaAZoCWgPQwgIW+z2GTxyQJSGlFKUaBVNQAFoFkdAmuAInfEXL3V9lChoBmgJaA9DCE2DonmA6W9AlIaUUpRoFU0oAWgWR0Ca4ZJx//eddX2UKGgGaAloD0MIf2lRn6SUcUCUhpRSlGgVTTwBaBZHQJrhpXPqs2h1fZQoaAZoCWgPQwgQWaSJ99dwQJSGlFKUaBVNEwFoFkdAmuKb4i5d4XV9lChoBmgJaA9DCLVv7q8exHFAlIaUUpRoFU0nAWgWR0Ca5B3YcvM9dX2UKGgGaAloD0MIilqaW6GfcUCUhpRSlGgVTQ0BaBZHQJrkbNUwSJ11fZQoaAZoCWgPQwi5bHTOD6hwQJSGlFKUaBVNuQFoFkdAmuUJmNBF/nV9lChoBmgJaA9DCBHDDmPSdXBAlIaUUpRoFU1OAWgWR0Ca5j9CNS62dX2UKGgGaAloD0MIiesYV5xPcUCUhpRSlGgVTTMBaBZHQJrmS/SH/Ll1fZQoaAZoCWgPQwiDhv4JrsBwQJSGlFKUaBVNJwFoFkdAmuekOqebu3V9lChoBmgJaA9DCKUTCaYaRGxAlIaUUpRoFU1qAWgWR0Ca6EQxesxPdX2UKGgGaAloD0MINj/+0iJQcUCUhpRSlGgVTSABaBZHQJrooyTINmV1fZQoaAZoCWgPQwhVibK31KNyQJSGlFKUaBVNMgFoFkdAmunKoVEeAHV9lChoBmgJaA9DCAPPvYdLoXBAlIaUUpRoFU0yAWgWR0Ca6dzF+/g0dX2UKGgGaAloD0MIw0SDFHzAckCUhpRSlGgVTSQBaBZHQJrp4kgOjIt1fZQoaAZoCWgPQwjxoURLHvhuQJSGlFKUaBVNRwFoFkdAmun7vw3HaXV9lChoBmgJaA9DCJGcTNyqom5AlIaUUpRoFU0yAWgWR0Ca6i0e2d/bdX2UKGgGaAloD0MImiMrv4zecECUhpRSlGgVTS4BaBZHQJrrf5ZbILh1fZQoaAZoCWgPQwgmUprN45prQJSGlFKUaBVNKAFoFkdAmuyAuEmICXV9lChoBmgJaA9DCGzNVl7yTHFAlIaUUpRoFU1OAWgWR0Ca7KBCD28JdX2UKGgGaAloD0MIwf7r3PQXcUCUhpRSlGgVTSkBaBZHQJruA0cfeUJ1fZQoaAZoCWgPQwh0DTM0HpdwQJSGlFKUaBVNQQFoFkdAmu8cOCoS+XV9lChoBmgJaA9DCCNpN/qYn21AlIaUUpRoFU0ZAWgWR0Ca72eSjgyedX2UKGgGaAloD0MIdXKG4k4sckCUhpRSlGgVTSoBaBZHQJsFU4YJmd11fZQoaAZoCWgPQwhfJR+7C+5sQJSGlFKUaBVNNwFoFkdAmwVpTAFgUnV9lChoBmgJaA9DCMpv0ckSXHJAlIaUUpRoFU0UAWgWR0CbBlZUDMePdX2UKGgGaAloD0MIml33VmSpcECUhpRSlGgVTbgBaBZHQJsHIsmOU+t1fZQoaAZoCWgPQwgCt+7mKQluQJSGlFKUaBVNOgFoFkdAmwd6UiY9gXV9lChoBmgJaA9DCC140VcQrXBAlIaUUpRoFUv2aBZHQJsIVcE/0NB1fZQoaAZoCWgPQwiGcw0zdENwQJSGlFKUaBVNkwFoFkdAmwiQQUYbbXV9lChoBmgJaA9DCNwvn6yYRXBAlIaUUpRoFU3CAWgWR0CbCONAkcCHdX2UKGgGaAloD0MIQ8u6fyyEckCUhpRSlGgVTWIBaBZHQJsI+9TP0I11fZQoaAZoCWgPQwj3Ax4YgO1wQJSGlFKUaBVNgwFoFkdAmwocbrC3w3V9lChoBmgJaA9DCHnm5bD70k1AlIaUUpRoFUufaBZHQJsLSavzOHF1fZQoaAZoCWgPQwhuoSsRaCxwQJSGlFKUaBVNxAFoFkdAmwyRW1c+q3V9lChoBmgJaA9DCOYeEr73cFJAlIaUUpRoFUvUaBZHQJsNTKW9lEt1fZQoaAZoCWgPQwhTknU4OttuQJSGlFKUaBVNVQFoFkdAmw1U8ifQKXV9lChoBmgJaA9DCD9uv3yyaE5AlIaUUpRoFUvIaBZHQJsNn+BH09R1fZQoaAZoCWgPQwiES8ecJ11xQJSGlFKUaBVNmQFoFkdAmw4hm5DqnnV9lChoBmgJaA9DCLiU88We+nBAlIaUUpRoFU1FAWgWR0CbDi8AJb+tdX2UKGgGaAloD0MIXmdD/hlicUCUhpRSlGgVTcsBaBZHQJsOkEJSiud1fZQoaAZoCWgPQwimgLT/AUdvQJSGlFKUaBVNCwFoFkdAmxAzyJ9Ao3V9lChoBmgJaA9DCK5H4XpUI3FAlIaUUpRoFU09AWgWR0CbE87cO9WZdX2UKGgGaAloD0MISx3k9WDKb0CUhpRSlGgVTXYBaBZHQJsWS39aUzN1fZQoaAZoCWgPQwg9ghspmwZxQJSGlFKUaBVNWQFoFkdAmxayuhbno3V9lChoBmgJaA9DCPynGyjwR3BAlIaUUpRoFU1CAWgWR0CbF09GI9DAdX2UKGgGaAloD0MI9+rjoe+ObUCUhpRSlGgVTTQBaBZHQJsZKgHu7Yl1fZQoaAZoCWgPQwje5o2TAphxQJSGlFKUaBVNOQFoFkdAmxqSAc1fmnV9lChoBmgJaA9DCByastPPIHFAlIaUUpRoFU2PAmgWR0CbGvEr5IpZdX2UKGgGaAloD0MIc51GWmpYcECUhpRSlGgVTfgBaBZHQJsbvjNpudh1fZQoaAZoCWgPQwiBs5QsJ+VyQJSGlFKUaBVNbQFoFkdAmxwM0Ltu1nV9lChoBmgJaA9DCDoF+dkIL3BAlIaUUpRoFU2NAWgWR0CbHBjua4MGdX2UKGgGaAloD0MIgIEgQAbocUCUhpRSlGgVTXgBaBZHQJsdBkiD/VB1fZQoaAZoCWgPQwj5hVeSPNpvQJSGlFKUaBVNhAFoFkdAmx38QZn+Q3V9lChoBmgJaA9DCHJRLSIKlGxAlIaUUpRoFU3GAWgWR0CbHtNAkcCHdX2UKGgGaAloD0MIdHtJY3TwcUCUhpRSlGgVTXMCaBZHQJsfJjG1hLJ1fZQoaAZoCWgPQwhtV+iDJYJxQJSGlFKUaBVNdgFoFkdAmx9QwGnn+3V9lChoBmgJaA9DCKq3BrbKK3JAlIaUUpRoFU1uAmgWR0CbH5eQuEmIdX2UKGgGaAloD0MI4/4j0yGxc0CUhpRSlGgVTWABaBZHQJshlJEpiJB1fZQoaAZoCWgPQwi77UJz3ZNxQJSGlFKUaBVNNwFoFkdAmyLR5s0pE3V9lChoBmgJaA9DCAn84ee/DnNAlIaUUpRoFU0fAWgWR0CbI3R7JGONdX2UKGgGaAloD0MIYrt7gG6CcECUhpRSlGgVTRoBaBZHQJskZLYf4h51fZQoaAZoCWgPQwjWx0PfnedwQJSGlFKUaBVL/WgWR0CbJKhew9q2dX2UKGgGaAloD0MIPGh23VtccECUhpRSlGgVTSsBaBZHQJslUJVsDW91fZQoaAZoCWgPQwjjxFc7SktxQJSGlFKUaBVNIgFoFkdAmyWo/Z/Tb3V9lChoBmgJaA9DCKddTDNdkHBAlIaUUpRoFU2XAWgWR0CbJdF8G9pRdX2UKGgGaAloD0MIh+EjYsogbUCUhpRSlGgVTRMBaBZHQJsmNXOnl4l1fZQoaAZoCWgPQwgRp5Ns9ZJvQJSGlFKUaBVNsQFoFkdAmyZKxHG0eHV9lChoBmgJaA9DCMS12sMeknJAlIaUUpRoFU0/AWgWR0CbJqkN4JNTdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78812dd3c960e0f239f0a529e519e79d756112b020d57367a6f9ee53f2d85e16
|
3 |
+
size 87865
|
ppo-LunarLander-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b00ce65541a89239d1441cdab4919e8b006bec12c1cfa036d282c4c5f61fd170
|
3 |
+
size 43201
|
ppo-LunarLander-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (229 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.2968285583356, "std_reward": 18.253051961491884, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-06T01:38:54.191928"}
|