Upload folder using huggingface_hub
Browse files- README.md +1950 -0
- config.json +7 -0
- model.bin +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +61 -0
- vocabulary.json +0 -0
README.md
ADDED
@@ -0,0 +1,1950 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- language
|
8 |
+
- granite
|
9 |
+
- embeddings
|
10 |
+
model-index:
|
11 |
+
- name: ibm-granite/granite-embedding-125m-english
|
12 |
+
results:
|
13 |
+
- dataset:
|
14 |
+
type: mteb/arguana
|
15 |
+
name: MTEB ArguaAna
|
16 |
+
config: default
|
17 |
+
split: test
|
18 |
+
task:
|
19 |
+
type: Retrieval
|
20 |
+
metrics:
|
21 |
+
- type: map_at_1
|
22 |
+
value: 0.33642
|
23 |
+
- type: map_at_10
|
24 |
+
value: 0.49716
|
25 |
+
- type: map_at_100
|
26 |
+
value: 0.50519
|
27 |
+
- type: map_at_1000
|
28 |
+
value: 0.50521
|
29 |
+
- type: map_at_3
|
30 |
+
value: 0.45057
|
31 |
+
- type: map_at_5
|
32 |
+
value: 0.47774
|
33 |
+
- type: mrr_at_1
|
34 |
+
value: 0.34922
|
35 |
+
- type: mrr_at_10
|
36 |
+
value: 0.50197
|
37 |
+
- type: mrr_at_100
|
38 |
+
value: 0.50992
|
39 |
+
- type: mrr_at_1000
|
40 |
+
value: 0.50994
|
41 |
+
- type: mrr_at_3
|
42 |
+
value: 0.45484
|
43 |
+
- type: mrr_at_5
|
44 |
+
value: 0.48272
|
45 |
+
- type: ndcg_at_1
|
46 |
+
value: 0.33642
|
47 |
+
- type: ndcg_at_10
|
48 |
+
value: 0.58401
|
49 |
+
- type: ndcg_at_100
|
50 |
+
value: 0.6157
|
51 |
+
- type: ndcg_at_1000
|
52 |
+
value: 0.61608
|
53 |
+
- type: ndcg_at_3
|
54 |
+
value: 0.48825
|
55 |
+
- type: ndcg_at_5
|
56 |
+
value: 0.53689
|
57 |
+
- type: precision_at_1
|
58 |
+
value: 0.33642
|
59 |
+
- type: precision_at_10
|
60 |
+
value: 0.08606
|
61 |
+
- type: precision_at_100
|
62 |
+
value: 0.00994
|
63 |
+
- type: precision_at_1000
|
64 |
+
value: 0.001
|
65 |
+
- type: precision_at_3
|
66 |
+
value: 0.19915
|
67 |
+
- type: precision_at_5
|
68 |
+
value: 0.14296
|
69 |
+
- type: recall_at_1
|
70 |
+
value: 0.33642
|
71 |
+
- type: recall_at_10
|
72 |
+
value: 0.8606
|
73 |
+
- type: recall_at_100
|
74 |
+
value: 0.9936
|
75 |
+
- type: recall_at_1000
|
76 |
+
value: 0.99644
|
77 |
+
- type: recall_at_3
|
78 |
+
value: 0.59744
|
79 |
+
- type: recall_at_5
|
80 |
+
value: 0.71479
|
81 |
+
- dataset:
|
82 |
+
type: mteb/climate-fever
|
83 |
+
name: MTEB ClimateFEVER
|
84 |
+
config: default
|
85 |
+
split: test
|
86 |
+
task:
|
87 |
+
type: Retrieval
|
88 |
+
metrics:
|
89 |
+
- type: map_at_1
|
90 |
+
value: 0.1457
|
91 |
+
- type: map_at_10
|
92 |
+
value: 0.24102
|
93 |
+
- type: map_at_100
|
94 |
+
value: 0.25826
|
95 |
+
- type: map_at_1000
|
96 |
+
value: 0.26021
|
97 |
+
- type: map_at_3
|
98 |
+
value: 0.20346
|
99 |
+
- type: map_at_5
|
100 |
+
value: 0.22228
|
101 |
+
- type: mrr_at_1
|
102 |
+
value: 0.32573
|
103 |
+
- type: mrr_at_10
|
104 |
+
value: 0.44411
|
105 |
+
- type: mrr_at_100
|
106 |
+
value: 0.45176
|
107 |
+
- type: mrr_at_1000
|
108 |
+
value: 0.45209
|
109 |
+
- type: mrr_at_3
|
110 |
+
value: 0.4126
|
111 |
+
- type: mrr_at_5
|
112 |
+
value: 0.43312
|
113 |
+
- type: ndcg_at_1
|
114 |
+
value: 0.32573
|
115 |
+
- type: ndcg_at_10
|
116 |
+
value: 0.3315
|
117 |
+
- type: ndcg_at_100
|
118 |
+
value: 0.39898
|
119 |
+
- type: ndcg_at_1000
|
120 |
+
value: 0.43151
|
121 |
+
- type: ndcg_at_3
|
122 |
+
value: 0.27683
|
123 |
+
- type: ndcg_at_5
|
124 |
+
value: 0.29538
|
125 |
+
- type: precision_at_1
|
126 |
+
value: 0.32573
|
127 |
+
- type: precision_at_10
|
128 |
+
value: 0.10176
|
129 |
+
- type: precision_at_100
|
130 |
+
value: 0.01754
|
131 |
+
- type: precision_at_1000
|
132 |
+
value: 0.00236
|
133 |
+
- type: precision_at_3
|
134 |
+
value: 0.20347
|
135 |
+
- type: precision_at_5
|
136 |
+
value: 0.15505
|
137 |
+
- type: recall_at_1
|
138 |
+
value: 0.1457
|
139 |
+
- type: recall_at_10
|
140 |
+
value: 0.38825
|
141 |
+
- type: recall_at_100
|
142 |
+
value: 0.62237
|
143 |
+
- type: recall_at_1000
|
144 |
+
value: 0.8022
|
145 |
+
- type: recall_at_3
|
146 |
+
value: 0.25245
|
147 |
+
- type: recall_at_5
|
148 |
+
value: 0.30821
|
149 |
+
- dataset:
|
150 |
+
type: mteb/cqadupstack-android
|
151 |
+
name: MTEB CQADupstackAndroidRetrieval
|
152 |
+
config: default
|
153 |
+
split: test
|
154 |
+
task:
|
155 |
+
type: Retrieval
|
156 |
+
metrics:
|
157 |
+
- type: map_at_1
|
158 |
+
value: 0.36964
|
159 |
+
- type: map_at_10
|
160 |
+
value: 0.5043
|
161 |
+
- type: map_at_100
|
162 |
+
value: 0.52066
|
163 |
+
- type: map_at_1000
|
164 |
+
value: 0.52175
|
165 |
+
- type: map_at_3
|
166 |
+
value: 0.46001
|
167 |
+
- type: map_at_5
|
168 |
+
value: 0.48312
|
169 |
+
- type: mrr_at_1
|
170 |
+
value: 0.45923
|
171 |
+
- type: mrr_at_10
|
172 |
+
value: 0.56733
|
173 |
+
- type: mrr_at_100
|
174 |
+
value: 0.57292
|
175 |
+
- type: mrr_at_1000
|
176 |
+
value: 0.57321
|
177 |
+
- type: mrr_at_3
|
178 |
+
value: 0.54053
|
179 |
+
- type: mrr_at_5
|
180 |
+
value: 0.55556
|
181 |
+
- type: ndcg_at_1
|
182 |
+
value: 0.45923
|
183 |
+
- type: ndcg_at_10
|
184 |
+
value: 0.57667
|
185 |
+
- type: ndcg_at_100
|
186 |
+
value: 0.62373
|
187 |
+
- type: ndcg_at_1000
|
188 |
+
value: 0.6368
|
189 |
+
- type: ndcg_at_3
|
190 |
+
value: 0.51843
|
191 |
+
- type: ndcg_at_5
|
192 |
+
value: 0.54257
|
193 |
+
- type: precision_at_1
|
194 |
+
value: 0.45923
|
195 |
+
- type: precision_at_10
|
196 |
+
value: 0.11316
|
197 |
+
- type: precision_at_100
|
198 |
+
value: 0.01705
|
199 |
+
- type: precision_at_1000
|
200 |
+
value: 0.00216
|
201 |
+
- type: precision_at_3
|
202 |
+
value: 0.2537
|
203 |
+
- type: precision_at_5
|
204 |
+
value: 0.1814
|
205 |
+
- type: recall_at_1
|
206 |
+
value: 0.36964
|
207 |
+
- type: recall_at_10
|
208 |
+
value: 0.71234
|
209 |
+
- type: recall_at_100
|
210 |
+
value: 0.90421
|
211 |
+
- type: recall_at_1000
|
212 |
+
value: 0.98296
|
213 |
+
- type: recall_at_3
|
214 |
+
value: 0.53655
|
215 |
+
- type: recall_at_5
|
216 |
+
value: 0.60996
|
217 |
+
- dataset:
|
218 |
+
type: mteb/cqadupstack-english
|
219 |
+
name: MTEB CQADupstackEnglishRetrieval
|
220 |
+
config: default
|
221 |
+
split: test
|
222 |
+
task:
|
223 |
+
type: Retrieval
|
224 |
+
metrics:
|
225 |
+
- type: map_at_1
|
226 |
+
value: 0.36198
|
227 |
+
- type: map_at_10
|
228 |
+
value: 0.49199
|
229 |
+
- type: map_at_100
|
230 |
+
value: 0.50602
|
231 |
+
- type: map_at_1000
|
232 |
+
value: 0.50736
|
233 |
+
- type: map_at_3
|
234 |
+
value: 0.45678
|
235 |
+
- type: map_at_5
|
236 |
+
value: 0.47605
|
237 |
+
- type: mrr_at_1
|
238 |
+
value: 0.45478
|
239 |
+
- type: mrr_at_10
|
240 |
+
value: 0.55075
|
241 |
+
- type: mrr_at_100
|
242 |
+
value: 0.55656
|
243 |
+
- type: mrr_at_1000
|
244 |
+
value: 0.55688
|
245 |
+
- type: mrr_at_3
|
246 |
+
value: 0.52887
|
247 |
+
- type: mrr_at_5
|
248 |
+
value: 0.54282
|
249 |
+
- type: ndcg_at_1
|
250 |
+
value: 0.45478
|
251 |
+
- type: ndcg_at_10
|
252 |
+
value: 0.55505
|
253 |
+
- type: ndcg_at_100
|
254 |
+
value: 0.59606
|
255 |
+
- type: ndcg_at_1000
|
256 |
+
value: 0.61255
|
257 |
+
- type: ndcg_at_3
|
258 |
+
value: 0.51124
|
259 |
+
- type: ndcg_at_5
|
260 |
+
value: 0.53166
|
261 |
+
- type: precision_at_1
|
262 |
+
value: 0.45478
|
263 |
+
- type: precision_at_10
|
264 |
+
value: 0.10752
|
265 |
+
- type: precision_at_100
|
266 |
+
value: 0.01666
|
267 |
+
- type: precision_at_1000
|
268 |
+
value: 0.00211
|
269 |
+
- type: precision_at_3
|
270 |
+
value: 0.25053
|
271 |
+
- type: precision_at_5
|
272 |
+
value: 0.17694
|
273 |
+
- type: recall_at_1
|
274 |
+
value: 0.36198
|
275 |
+
- type: recall_at_10
|
276 |
+
value: 0.66465
|
277 |
+
- type: recall_at_100
|
278 |
+
value: 0.83632
|
279 |
+
- type: recall_at_1000
|
280 |
+
value: 0.93276
|
281 |
+
- type: recall_at_3
|
282 |
+
value: 0.53207
|
283 |
+
- type: recall_at_5
|
284 |
+
value: 0.59169
|
285 |
+
- dataset:
|
286 |
+
type: mteb/cqadupstack-gaming
|
287 |
+
name: MTEB CQADupstackGamingRetrieval
|
288 |
+
config: default
|
289 |
+
split: test
|
290 |
+
task:
|
291 |
+
type: Retrieval
|
292 |
+
metrics:
|
293 |
+
- type: map_at_1
|
294 |
+
value: 0.44157
|
295 |
+
- type: map_at_10
|
296 |
+
value: 0.57753
|
297 |
+
- type: map_at_100
|
298 |
+
value: 0.58698
|
299 |
+
- type: map_at_1000
|
300 |
+
value: 0.5874
|
301 |
+
- type: map_at_3
|
302 |
+
value: 0.54223
|
303 |
+
- type: map_at_5
|
304 |
+
value: 0.56307
|
305 |
+
- type: mrr_at_1
|
306 |
+
value: 0.50094
|
307 |
+
- type: mrr_at_10
|
308 |
+
value: 0.607
|
309 |
+
- type: mrr_at_100
|
310 |
+
value: 0.6126
|
311 |
+
- type: mrr_at_1000
|
312 |
+
value: 0.6128
|
313 |
+
- type: mrr_at_3
|
314 |
+
value: 0.58265
|
315 |
+
- type: mrr_at_5
|
316 |
+
value: 0.59817
|
317 |
+
- type: ndcg_at_1
|
318 |
+
value: 0.50094
|
319 |
+
- type: ndcg_at_10
|
320 |
+
value: 0.63641
|
321 |
+
- type: ndcg_at_100
|
322 |
+
value: 0.67055
|
323 |
+
- type: ndcg_at_1000
|
324 |
+
value: 0.67855
|
325 |
+
- type: ndcg_at_3
|
326 |
+
value: 0.58022
|
327 |
+
- type: ndcg_at_5
|
328 |
+
value: 0.6097
|
329 |
+
- type: precision_at_1
|
330 |
+
value: 0.50094
|
331 |
+
- type: precision_at_10
|
332 |
+
value: 0.10182
|
333 |
+
- type: precision_at_100
|
334 |
+
value: 0.01278
|
335 |
+
- type: precision_at_1000
|
336 |
+
value: 0.00138
|
337 |
+
- type: precision_at_3
|
338 |
+
value: 0.2581
|
339 |
+
- type: precision_at_5
|
340 |
+
value: 0.17755
|
341 |
+
- type: recall_at_1
|
342 |
+
value: 0.44157
|
343 |
+
- type: recall_at_10
|
344 |
+
value: 0.7778
|
345 |
+
- type: recall_at_100
|
346 |
+
value: 0.92244
|
347 |
+
- type: recall_at_1000
|
348 |
+
value: 0.9781
|
349 |
+
- type: recall_at_3
|
350 |
+
value: 0.63087
|
351 |
+
- type: recall_at_5
|
352 |
+
value: 0.70172
|
353 |
+
- dataset:
|
354 |
+
type: mteb/cqadupstack-gis
|
355 |
+
name: MTEB CQADupstackGisRetrieval
|
356 |
+
config: default
|
357 |
+
split: test
|
358 |
+
task:
|
359 |
+
type: Retrieval
|
360 |
+
metrics:
|
361 |
+
- type: map_at_1
|
362 |
+
value: 0.29532
|
363 |
+
- type: map_at_10
|
364 |
+
value: 0.40214
|
365 |
+
- type: map_at_100
|
366 |
+
value: 0.41289
|
367 |
+
- type: map_at_1000
|
368 |
+
value: 0.41359
|
369 |
+
- type: map_at_3
|
370 |
+
value: 0.37086
|
371 |
+
- type: map_at_5
|
372 |
+
value: 0.38889
|
373 |
+
- type: mrr_at_1
|
374 |
+
value: 0.3209
|
375 |
+
- type: mrr_at_10
|
376 |
+
value: 0.42423
|
377 |
+
- type: mrr_at_100
|
378 |
+
value: 0.43342
|
379 |
+
- type: mrr_at_1000
|
380 |
+
value: 0.43395
|
381 |
+
- type: mrr_at_3
|
382 |
+
value: 0.39736
|
383 |
+
- type: mrr_at_5
|
384 |
+
value: 0.41307
|
385 |
+
- type: ndcg_at_1
|
386 |
+
value: 0.3209
|
387 |
+
- type: ndcg_at_10
|
388 |
+
value: 0.46075
|
389 |
+
- type: ndcg_at_100
|
390 |
+
value: 0.5103
|
391 |
+
- type: ndcg_at_1000
|
392 |
+
value: 0.52668
|
393 |
+
- type: ndcg_at_3
|
394 |
+
value: 0.40149
|
395 |
+
- type: ndcg_at_5
|
396 |
+
value: 0.43111
|
397 |
+
- type: precision_at_1
|
398 |
+
value: 0.3209
|
399 |
+
- type: precision_at_10
|
400 |
+
value: 0.07141
|
401 |
+
- type: precision_at_100
|
402 |
+
value: 0.01018
|
403 |
+
- type: precision_at_1000
|
404 |
+
value: 0.00118
|
405 |
+
- type: precision_at_3
|
406 |
+
value: 0.17175
|
407 |
+
- type: precision_at_5
|
408 |
+
value: 0.12068
|
409 |
+
- type: recall_at_1
|
410 |
+
value: 0.29532
|
411 |
+
- type: recall_at_10
|
412 |
+
value: 0.62025
|
413 |
+
- type: recall_at_100
|
414 |
+
value: 0.83829
|
415 |
+
- type: recall_at_1000
|
416 |
+
value: 0.95995
|
417 |
+
- type: recall_at_3
|
418 |
+
value: 0.4603
|
419 |
+
- type: recall_at_5
|
420 |
+
value: 0.53089
|
421 |
+
- dataset:
|
422 |
+
type: mteb/cqadupstack-mathematica
|
423 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
424 |
+
config: default
|
425 |
+
split: test
|
426 |
+
task:
|
427 |
+
type: Retrieval
|
428 |
+
metrics:
|
429 |
+
- type: map_at_1
|
430 |
+
value: 0.18944
|
431 |
+
- type: map_at_10
|
432 |
+
value: 0.29611
|
433 |
+
- type: map_at_100
|
434 |
+
value: 0.31063
|
435 |
+
- type: map_at_1000
|
436 |
+
value: 0.31174
|
437 |
+
- type: map_at_3
|
438 |
+
value: 0.26098
|
439 |
+
- type: map_at_5
|
440 |
+
value: 0.28151
|
441 |
+
- type: mrr_at_1
|
442 |
+
value: 0.23756
|
443 |
+
- type: mrr_at_10
|
444 |
+
value: 0.34491
|
445 |
+
- type: mrr_at_100
|
446 |
+
value: 0.35457
|
447 |
+
- type: mrr_at_1000
|
448 |
+
value: 0.35512
|
449 |
+
- type: mrr_at_3
|
450 |
+
value: 0.3126
|
451 |
+
- type: mrr_at_5
|
452 |
+
value: 0.3317
|
453 |
+
- type: ndcg_at_1
|
454 |
+
value: 0.23756
|
455 |
+
- type: ndcg_at_10
|
456 |
+
value: 0.36015
|
457 |
+
- type: ndcg_at_100
|
458 |
+
value: 0.42175
|
459 |
+
- type: ndcg_at_1000
|
460 |
+
value: 0.44607
|
461 |
+
- type: ndcg_at_3
|
462 |
+
value: 0.29725
|
463 |
+
- type: ndcg_at_5
|
464 |
+
value: 0.32879
|
465 |
+
- type: precision_at_1
|
466 |
+
value: 0.23756
|
467 |
+
- type: precision_at_10
|
468 |
+
value: 0.06928
|
469 |
+
- type: precision_at_100
|
470 |
+
value: 0.01153
|
471 |
+
- type: precision_at_1000
|
472 |
+
value: 0.00149
|
473 |
+
- type: precision_at_3
|
474 |
+
value: 0.14635
|
475 |
+
- type: precision_at_5
|
476 |
+
value: 0.1107
|
477 |
+
- type: recall_at_1
|
478 |
+
value: 0.18944
|
479 |
+
- type: recall_at_10
|
480 |
+
value: 0.50691
|
481 |
+
- type: recall_at_100
|
482 |
+
value: 0.76503
|
483 |
+
- type: recall_at_1000
|
484 |
+
value: 0.93624
|
485 |
+
- type: recall_at_3
|
486 |
+
value: 0.33611
|
487 |
+
- type: recall_at_5
|
488 |
+
value: 0.41427
|
489 |
+
- dataset:
|
490 |
+
type: mteb/cqadupstack-physics
|
491 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
492 |
+
config: default
|
493 |
+
split: test
|
494 |
+
task:
|
495 |
+
type: Retrieval
|
496 |
+
metrics:
|
497 |
+
- type: map_at_1
|
498 |
+
value: 0.33824
|
499 |
+
- type: map_at_10
|
500 |
+
value: 0.46868
|
501 |
+
- type: map_at_100
|
502 |
+
value: 0.48306
|
503 |
+
- type: map_at_1000
|
504 |
+
value: 0.48406
|
505 |
+
- type: map_at_3
|
506 |
+
value: 0.43335
|
507 |
+
- type: map_at_5
|
508 |
+
value: 0.45279
|
509 |
+
- type: mrr_at_1
|
510 |
+
value: 0.42348
|
511 |
+
- type: mrr_at_10
|
512 |
+
value: 0.52972
|
513 |
+
- type: mrr_at_100
|
514 |
+
value: 0.53707
|
515 |
+
- type: mrr_at_1000
|
516 |
+
value: 0.53734
|
517 |
+
- type: mrr_at_3
|
518 |
+
value: 0.50722
|
519 |
+
- type: mrr_at_5
|
520 |
+
value: 0.52012
|
521 |
+
- type: ndcg_at_1
|
522 |
+
value: 0.42348
|
523 |
+
- type: ndcg_at_10
|
524 |
+
value: 0.53504
|
525 |
+
- type: ndcg_at_100
|
526 |
+
value: 0.58899
|
527 |
+
- type: ndcg_at_1000
|
528 |
+
value: 0.60323
|
529 |
+
- type: ndcg_at_3
|
530 |
+
value: 0.48478
|
531 |
+
- type: ndcg_at_5
|
532 |
+
value: 0.5079
|
533 |
+
- type: precision_at_1
|
534 |
+
value: 0.42348
|
535 |
+
- type: precision_at_10
|
536 |
+
value: 0.0975
|
537 |
+
- type: precision_at_100
|
538 |
+
value: 0.01466
|
539 |
+
- type: precision_at_1000
|
540 |
+
value: 0.00177
|
541 |
+
- type: precision_at_3
|
542 |
+
value: 0.23741
|
543 |
+
- type: precision_at_5
|
544 |
+
value: 0.16439
|
545 |
+
- type: recall_at_1
|
546 |
+
value: 0.33824
|
547 |
+
- type: recall_at_10
|
548 |
+
value: 0.67142
|
549 |
+
- type: recall_at_100
|
550 |
+
value: 0.89134
|
551 |
+
- type: recall_at_1000
|
552 |
+
value: 0.97816
|
553 |
+
- type: recall_at_3
|
554 |
+
value: 0.52305
|
555 |
+
- type: recall_at_5
|
556 |
+
value: 0.58804
|
557 |
+
- dataset:
|
558 |
+
type: mteb/cqadupstack-programmers
|
559 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
560 |
+
config: default
|
561 |
+
split: test
|
562 |
+
task:
|
563 |
+
type: Retrieval
|
564 |
+
metrics:
|
565 |
+
- type: map_at_1
|
566 |
+
value: 0.30125
|
567 |
+
- type: map_at_10
|
568 |
+
value: 0.42119
|
569 |
+
- type: map_at_100
|
570 |
+
value: 0.43599
|
571 |
+
- type: map_at_1000
|
572 |
+
value: 0.4369
|
573 |
+
- type: map_at_3
|
574 |
+
value: 0.38018
|
575 |
+
- type: map_at_5
|
576 |
+
value: 0.40368
|
577 |
+
- type: mrr_at_1
|
578 |
+
value: 0.37557
|
579 |
+
- type: mrr_at_10
|
580 |
+
value: 0.47573
|
581 |
+
- type: mrr_at_100
|
582 |
+
value: 0.4846
|
583 |
+
- type: mrr_at_1000
|
584 |
+
value: 0.48499
|
585 |
+
- type: mrr_at_3
|
586 |
+
value: 0.44654
|
587 |
+
- type: mrr_at_5
|
588 |
+
value: 0.4644
|
589 |
+
- type: ndcg_at_1
|
590 |
+
value: 0.37557
|
591 |
+
- type: ndcg_at_10
|
592 |
+
value: 0.48743
|
593 |
+
- type: ndcg_at_100
|
594 |
+
value: 0.54458
|
595 |
+
- type: ndcg_at_1000
|
596 |
+
value: 0.56076
|
597 |
+
- type: ndcg_at_3
|
598 |
+
value: 0.42573
|
599 |
+
- type: ndcg_at_5
|
600 |
+
value: 0.45528
|
601 |
+
- type: precision_at_1
|
602 |
+
value: 0.37557
|
603 |
+
- type: precision_at_10
|
604 |
+
value: 0.09269
|
605 |
+
- type: precision_at_100
|
606 |
+
value: 0.01401
|
607 |
+
- type: precision_at_1000
|
608 |
+
value: 0.0017
|
609 |
+
- type: precision_at_3
|
610 |
+
value: 0.20624
|
611 |
+
- type: precision_at_5
|
612 |
+
value: 0.15068
|
613 |
+
- type: recall_at_1
|
614 |
+
value: 0.30125
|
615 |
+
- type: recall_at_10
|
616 |
+
value: 0.62619
|
617 |
+
- type: recall_at_100
|
618 |
+
value: 0.86574
|
619 |
+
- type: recall_at_1000
|
620 |
+
value: 0.97102
|
621 |
+
- type: recall_at_3
|
622 |
+
value: 0.45437
|
623 |
+
- type: recall_at_5
|
624 |
+
value: 0.53197
|
625 |
+
- dataset:
|
626 |
+
type: mteb/cqadupstack-stats
|
627 |
+
name: MTEB CQADupstackStatsRetrieval
|
628 |
+
config: default
|
629 |
+
split: test
|
630 |
+
task:
|
631 |
+
type: Retrieval
|
632 |
+
metrics:
|
633 |
+
- type: map_at_1
|
634 |
+
value: 0.29193
|
635 |
+
- type: map_at_10
|
636 |
+
value: 0.37529
|
637 |
+
- type: map_at_100
|
638 |
+
value: 0.38614
|
639 |
+
- type: map_at_1000
|
640 |
+
value: 0.38714
|
641 |
+
- type: map_at_3
|
642 |
+
value: 0.34897
|
643 |
+
- type: map_at_5
|
644 |
+
value: 0.36273
|
645 |
+
- type: mrr_at_1
|
646 |
+
value: 0.32669
|
647 |
+
- type: mrr_at_10
|
648 |
+
value: 0.40288
|
649 |
+
- type: mrr_at_100
|
650 |
+
value: 0.41177
|
651 |
+
- type: mrr_at_1000
|
652 |
+
value: 0.41241
|
653 |
+
- type: mrr_at_3
|
654 |
+
value: 0.38037
|
655 |
+
- type: mrr_at_5
|
656 |
+
value: 0.39195
|
657 |
+
- type: ndcg_at_1
|
658 |
+
value: 0.32669
|
659 |
+
- type: ndcg_at_10
|
660 |
+
value: 0.42353
|
661 |
+
- type: ndcg_at_100
|
662 |
+
value: 0.47424
|
663 |
+
- type: ndcg_at_1000
|
664 |
+
value: 0.4959
|
665 |
+
- type: ndcg_at_3
|
666 |
+
value: 0.37604
|
667 |
+
- type: ndcg_at_5
|
668 |
+
value: 0.39682
|
669 |
+
- type: precision_at_1
|
670 |
+
value: 0.32669
|
671 |
+
- type: precision_at_10
|
672 |
+
value: 0.06871
|
673 |
+
- type: precision_at_100
|
674 |
+
value: 0.01008
|
675 |
+
- type: precision_at_1000
|
676 |
+
value: 0.00126
|
677 |
+
- type: precision_at_3
|
678 |
+
value: 0.16309
|
679 |
+
- type: precision_at_5
|
680 |
+
value: 0.11288
|
681 |
+
- type: recall_at_1
|
682 |
+
value: 0.29193
|
683 |
+
- type: recall_at_10
|
684 |
+
value: 0.54159
|
685 |
+
- type: recall_at_100
|
686 |
+
value: 0.77267
|
687 |
+
- type: recall_at_1000
|
688 |
+
value: 0.92805
|
689 |
+
- type: recall_at_3
|
690 |
+
value: 0.41014
|
691 |
+
- type: recall_at_5
|
692 |
+
value: 0.46248
|
693 |
+
- dataset:
|
694 |
+
type: mteb/cqadupstack-tex
|
695 |
+
name: MTEB CQADupstackTexRetrieval
|
696 |
+
config: default
|
697 |
+
split: test
|
698 |
+
task:
|
699 |
+
type: Retrieval
|
700 |
+
metrics:
|
701 |
+
- type: map_at_1
|
702 |
+
value: 0.21217
|
703 |
+
- type: map_at_10
|
704 |
+
value: 0.30848
|
705 |
+
- type: map_at_100
|
706 |
+
value: 0.32173
|
707 |
+
- type: map_at_1000
|
708 |
+
value: 0.32296
|
709 |
+
- type: map_at_3
|
710 |
+
value: 0.27882
|
711 |
+
- type: map_at_5
|
712 |
+
value: 0.29537
|
713 |
+
- type: mrr_at_1
|
714 |
+
value: 0.25946
|
715 |
+
- type: mrr_at_10
|
716 |
+
value: 0.35091
|
717 |
+
- type: mrr_at_100
|
718 |
+
value: 0.36047
|
719 |
+
- type: mrr_at_1000
|
720 |
+
value: 0.36111
|
721 |
+
- type: mrr_at_3
|
722 |
+
value: 0.32485
|
723 |
+
- type: mrr_at_5
|
724 |
+
value: 0.33964
|
725 |
+
- type: ndcg_at_1
|
726 |
+
value: 0.25946
|
727 |
+
- type: ndcg_at_10
|
728 |
+
value: 0.3655
|
729 |
+
- type: ndcg_at_100
|
730 |
+
value: 0.42328
|
731 |
+
- type: ndcg_at_1000
|
732 |
+
value: 0.44783
|
733 |
+
- type: ndcg_at_3
|
734 |
+
value: 0.31463
|
735 |
+
- type: ndcg_at_5
|
736 |
+
value: 0.33803
|
737 |
+
- type: precision_at_1
|
738 |
+
value: 0.25946
|
739 |
+
- type: precision_at_10
|
740 |
+
value: 0.06793
|
741 |
+
- type: precision_at_100
|
742 |
+
value: 0.01138
|
743 |
+
- type: precision_at_1000
|
744 |
+
value: 0.00155
|
745 |
+
- type: precision_at_3
|
746 |
+
value: 0.1513
|
747 |
+
- type: precision_at_5
|
748 |
+
value: 0.10991
|
749 |
+
- type: recall_at_1
|
750 |
+
value: 0.21217
|
751 |
+
- type: recall_at_10
|
752 |
+
value: 0.49327
|
753 |
+
- type: recall_at_100
|
754 |
+
value: 0.7472
|
755 |
+
- type: recall_at_1000
|
756 |
+
value: 0.91637
|
757 |
+
- type: recall_at_3
|
758 |
+
value: 0.34993
|
759 |
+
- type: recall_at_5
|
760 |
+
value: 0.41029
|
761 |
+
- dataset:
|
762 |
+
type: mteb/cqadupstack-unix
|
763 |
+
name: MTEB CQADupstackUnixRetrieval
|
764 |
+
config: default
|
765 |
+
split: test
|
766 |
+
task:
|
767 |
+
type: Retrieval
|
768 |
+
metrics:
|
769 |
+
- type: map_at_1
|
770 |
+
value: 0.34303
|
771 |
+
- type: map_at_10
|
772 |
+
value: 0.45312
|
773 |
+
- type: map_at_100
|
774 |
+
value: 0.46563
|
775 |
+
- type: map_at_1000
|
776 |
+
value: 0.4664
|
777 |
+
- type: map_at_3
|
778 |
+
value: 0.4143
|
779 |
+
- type: map_at_5
|
780 |
+
value: 0.43633
|
781 |
+
- type: mrr_at_1
|
782 |
+
value: 0.40112
|
783 |
+
- type: mrr_at_10
|
784 |
+
value: 0.49097
|
785 |
+
- type: mrr_at_100
|
786 |
+
value: 0.49966
|
787 |
+
- type: mrr_at_1000
|
788 |
+
value: 0.50006
|
789 |
+
- type: mrr_at_3
|
790 |
+
value: 0.46129
|
791 |
+
- type: mrr_at_5
|
792 |
+
value: 0.47901
|
793 |
+
- type: ndcg_at_1
|
794 |
+
value: 0.40112
|
795 |
+
- type: ndcg_at_10
|
796 |
+
value: 0.513
|
797 |
+
- type: ndcg_at_100
|
798 |
+
value: 0.56534
|
799 |
+
- type: ndcg_at_1000
|
800 |
+
value: 0.58048
|
801 |
+
- type: ndcg_at_3
|
802 |
+
value: 0.4491
|
803 |
+
- type: ndcg_at_5
|
804 |
+
value: 0.48048
|
805 |
+
- type: precision_at_1
|
806 |
+
value: 0.40112
|
807 |
+
- type: precision_at_10
|
808 |
+
value: 0.08806
|
809 |
+
- type: precision_at_100
|
810 |
+
value: 0.01266
|
811 |
+
- type: precision_at_1000
|
812 |
+
value: 0.00149
|
813 |
+
- type: precision_at_3
|
814 |
+
value: 0.20211
|
815 |
+
- type: precision_at_5
|
816 |
+
value: 0.14496
|
817 |
+
- type: recall_at_1
|
818 |
+
value: 0.34303
|
819 |
+
- type: recall_at_10
|
820 |
+
value: 0.65508
|
821 |
+
- type: recall_at_100
|
822 |
+
value: 0.8753
|
823 |
+
- type: recall_at_1000
|
824 |
+
value: 0.9742
|
825 |
+
- type: recall_at_3
|
826 |
+
value: 0.48465
|
827 |
+
- type: recall_at_5
|
828 |
+
value: 0.56374
|
829 |
+
- dataset:
|
830 |
+
type: mteb/cqadupstack-webmasters
|
831 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
832 |
+
config: default
|
833 |
+
split: test
|
834 |
+
task:
|
835 |
+
type: Retrieval
|
836 |
+
metrics:
|
837 |
+
- type: map_at_1
|
838 |
+
value: 0.30312
|
839 |
+
- type: map_at_10
|
840 |
+
value: 0.40931
|
841 |
+
- type: map_at_100
|
842 |
+
value: 0.42893
|
843 |
+
- type: map_at_1000
|
844 |
+
value: 0.4312
|
845 |
+
- type: map_at_3
|
846 |
+
value: 0.37527
|
847 |
+
- type: map_at_5
|
848 |
+
value: 0.3936
|
849 |
+
- type: mrr_at_1
|
850 |
+
value: 0.36364
|
851 |
+
- type: mrr_at_10
|
852 |
+
value: 0.45677
|
853 |
+
- type: mrr_at_100
|
854 |
+
value: 0.46753
|
855 |
+
- type: mrr_at_1000
|
856 |
+
value: 0.46787
|
857 |
+
- type: mrr_at_3
|
858 |
+
value: 0.42918
|
859 |
+
- type: mrr_at_5
|
860 |
+
value: 0.4443
|
861 |
+
- type: ndcg_at_1
|
862 |
+
value: 0.36364
|
863 |
+
- type: ndcg_at_10
|
864 |
+
value: 0.47301
|
865 |
+
- type: ndcg_at_100
|
866 |
+
value: 0.53698
|
867 |
+
- type: ndcg_at_1000
|
868 |
+
value: 0.55503
|
869 |
+
- type: ndcg_at_3
|
870 |
+
value: 0.41875
|
871 |
+
- type: ndcg_at_5
|
872 |
+
value: 0.44316
|
873 |
+
- type: precision_at_1
|
874 |
+
value: 0.36364
|
875 |
+
- type: precision_at_10
|
876 |
+
value: 0.09032
|
877 |
+
- type: precision_at_100
|
878 |
+
value: 0.01806
|
879 |
+
- type: precision_at_1000
|
880 |
+
value: 0.00258
|
881 |
+
- type: precision_at_3
|
882 |
+
value: 0.19499
|
883 |
+
- type: precision_at_5
|
884 |
+
value: 0.1415
|
885 |
+
- type: recall_at_1
|
886 |
+
value: 0.30312
|
887 |
+
- type: recall_at_10
|
888 |
+
value: 0.59418
|
889 |
+
- type: recall_at_100
|
890 |
+
value: 0.8656
|
891 |
+
- type: recall_at_1000
|
892 |
+
value: 0.97412
|
893 |
+
- type: recall_at_3
|
894 |
+
value: 0.44251
|
895 |
+
- type: recall_at_5
|
896 |
+
value: 0.50457
|
897 |
+
- dataset:
|
898 |
+
type: mteb/cqadupstack-wordpress
|
899 |
+
name: MTEB CQADupstackWordpressRetrieval
|
900 |
+
config: default
|
901 |
+
split: test
|
902 |
+
task:
|
903 |
+
type: Retrieval
|
904 |
+
metrics:
|
905 |
+
- type: map_at_1
|
906 |
+
value: 0.23851
|
907 |
+
- type: map_at_10
|
908 |
+
value: 0.33429
|
909 |
+
- type: map_at_100
|
910 |
+
value: 0.34482
|
911 |
+
- type: map_at_1000
|
912 |
+
value: 0.3457
|
913 |
+
- type: map_at_3
|
914 |
+
value: 0.30271
|
915 |
+
- type: map_at_5
|
916 |
+
value: 0.31905
|
917 |
+
- type: mrr_at_1
|
918 |
+
value: 0.25693
|
919 |
+
- type: mrr_at_10
|
920 |
+
value: 0.35383
|
921 |
+
- type: mrr_at_100
|
922 |
+
value: 0.36295
|
923 |
+
- type: mrr_at_1000
|
924 |
+
value: 0.36346
|
925 |
+
- type: mrr_at_3
|
926 |
+
value: 0.32532
|
927 |
+
- type: mrr_at_5
|
928 |
+
value: 0.3402
|
929 |
+
- type: ndcg_at_1
|
930 |
+
value: 0.25693
|
931 |
+
- type: ndcg_at_10
|
932 |
+
value: 0.39196
|
933 |
+
- type: ndcg_at_100
|
934 |
+
value: 0.44501
|
935 |
+
- type: ndcg_at_1000
|
936 |
+
value: 0.46482
|
937 |
+
- type: ndcg_at_3
|
938 |
+
value: 0.33
|
939 |
+
- type: ndcg_at_5
|
940 |
+
value: 0.35736
|
941 |
+
- type: precision_at_1
|
942 |
+
value: 0.25693
|
943 |
+
- type: precision_at_10
|
944 |
+
value: 0.06433
|
945 |
+
- type: precision_at_100
|
946 |
+
value: 0.00989
|
947 |
+
- type: precision_at_1000
|
948 |
+
value: 0.00128
|
949 |
+
- type: precision_at_3
|
950 |
+
value: 0.14295
|
951 |
+
- type: precision_at_5
|
952 |
+
value: 0.10277
|
953 |
+
- type: recall_at_1
|
954 |
+
value: 0.23851
|
955 |
+
- type: recall_at_10
|
956 |
+
value: 0.55036
|
957 |
+
- type: recall_at_100
|
958 |
+
value: 0.79592
|
959 |
+
- type: recall_at_1000
|
960 |
+
value: 0.94283
|
961 |
+
- type: recall_at_3
|
962 |
+
value: 0.38435
|
963 |
+
- type: recall_at_5
|
964 |
+
value: 0.44872
|
965 |
+
- dataset:
|
966 |
+
type: mteb/dbpedia
|
967 |
+
name: MTEB DBPedia
|
968 |
+
config: default
|
969 |
+
split: test
|
970 |
+
task:
|
971 |
+
type: Retrieval
|
972 |
+
metrics:
|
973 |
+
- type: map_at_1
|
974 |
+
value: 0.0871
|
975 |
+
- type: map_at_10
|
976 |
+
value: 0.19218
|
977 |
+
- type: map_at_100
|
978 |
+
value: 0.26291
|
979 |
+
- type: map_at_1000
|
980 |
+
value: 0.27985
|
981 |
+
- type: map_at_3
|
982 |
+
value: 0.13974
|
983 |
+
- type: map_at_5
|
984 |
+
value: 0.16104
|
985 |
+
- type: mrr_at_1
|
986 |
+
value: 0.6725
|
987 |
+
- type: mrr_at_10
|
988 |
+
value: 0.75037
|
989 |
+
- type: mrr_at_100
|
990 |
+
value: 0.75318
|
991 |
+
- type: mrr_at_1000
|
992 |
+
value: 0.75325
|
993 |
+
- type: mrr_at_3
|
994 |
+
value: 0.73833
|
995 |
+
- type: mrr_at_5
|
996 |
+
value: 0.74308
|
997 |
+
- type: ndcg_at_1
|
998 |
+
value: 0.54375
|
999 |
+
- type: ndcg_at_10
|
1000 |
+
value: 0.39409
|
1001 |
+
- type: ndcg_at_100
|
1002 |
+
value: 0.44382
|
1003 |
+
- type: ndcg_at_1000
|
1004 |
+
value: 0.52485
|
1005 |
+
- type: ndcg_at_3
|
1006 |
+
value: 0.44463
|
1007 |
+
- type: ndcg_at_5
|
1008 |
+
value: 0.41276
|
1009 |
+
- type: precision_at_1
|
1010 |
+
value: 0.6725
|
1011 |
+
- type: precision_at_10
|
1012 |
+
value: 0.3055
|
1013 |
+
- type: precision_at_100
|
1014 |
+
value: 0.09588
|
1015 |
+
- type: precision_at_1000
|
1016 |
+
value: 0.02118
|
1017 |
+
- type: precision_at_3
|
1018 |
+
value: 0.48167
|
1019 |
+
- type: precision_at_5
|
1020 |
+
value: 0.394
|
1021 |
+
- type: recall_at_1
|
1022 |
+
value: 0.0871
|
1023 |
+
- type: recall_at_10
|
1024 |
+
value: 0.2527
|
1025 |
+
- type: recall_at_100
|
1026 |
+
value: 0.5185
|
1027 |
+
- type: recall_at_1000
|
1028 |
+
value: 0.76491
|
1029 |
+
- type: recall_at_3
|
1030 |
+
value: 0.15516
|
1031 |
+
- type: recall_at_5
|
1032 |
+
value: 0.18907
|
1033 |
+
- dataset:
|
1034 |
+
type: mteb/fever
|
1035 |
+
name: MTEB FEVER
|
1036 |
+
config: default
|
1037 |
+
split: test
|
1038 |
+
task:
|
1039 |
+
type: Retrieval
|
1040 |
+
metrics:
|
1041 |
+
- type: map_at_1
|
1042 |
+
value: 0.78993
|
1043 |
+
- type: map_at_10
|
1044 |
+
value: 0.8502
|
1045 |
+
- type: map_at_100
|
1046 |
+
value: 0.85186
|
1047 |
+
- type: map_at_1000
|
1048 |
+
value: 0.852
|
1049 |
+
- type: map_at_3
|
1050 |
+
value: 0.8437
|
1051 |
+
- type: map_at_5
|
1052 |
+
value: 0.84812
|
1053 |
+
- type: mrr_at_1
|
1054 |
+
value: 0.85179
|
1055 |
+
- type: mrr_at_10
|
1056 |
+
value: 0.90744
|
1057 |
+
- type: mrr_at_100
|
1058 |
+
value: 0.90799
|
1059 |
+
- type: mrr_at_1000
|
1060 |
+
value: 0.90801
|
1061 |
+
- type: mrr_at_3
|
1062 |
+
value: 0.90322
|
1063 |
+
- type: mrr_at_5
|
1064 |
+
value: 0.90622
|
1065 |
+
- type: ndcg_at_1
|
1066 |
+
value: 0.85179
|
1067 |
+
- type: ndcg_at_10
|
1068 |
+
value: 0.88229
|
1069 |
+
- type: ndcg_at_100
|
1070 |
+
value: 0.8884
|
1071 |
+
- type: ndcg_at_1000
|
1072 |
+
value: 0.89116
|
1073 |
+
- type: ndcg_at_3
|
1074 |
+
value: 0.87304
|
1075 |
+
- type: ndcg_at_5
|
1076 |
+
value: 0.87862
|
1077 |
+
- type: precision_at_1
|
1078 |
+
value: 0.85179
|
1079 |
+
- type: precision_at_10
|
1080 |
+
value: 0.10129
|
1081 |
+
- type: precision_at_100
|
1082 |
+
value: 0.0106
|
1083 |
+
- type: precision_at_1000
|
1084 |
+
value: 0.0011
|
1085 |
+
- type: precision_at_3
|
1086 |
+
value: 0.32543
|
1087 |
+
- type: precision_at_5
|
1088 |
+
value: 0.19931
|
1089 |
+
- type: recall_at_1
|
1090 |
+
value: 0.78993
|
1091 |
+
- type: recall_at_10
|
1092 |
+
value: 0.92685
|
1093 |
+
- type: recall_at_100
|
1094 |
+
value: 0.9516
|
1095 |
+
- type: recall_at_1000
|
1096 |
+
value: 0.96943
|
1097 |
+
- type: recall_at_3
|
1098 |
+
value: 0.89965
|
1099 |
+
- type: recall_at_5
|
1100 |
+
value: 0.91562
|
1101 |
+
- dataset:
|
1102 |
+
type: mteb/fiqa
|
1103 |
+
name: MTEB FiQA2018
|
1104 |
+
config: default
|
1105 |
+
split: test
|
1106 |
+
task:
|
1107 |
+
type: Retrieval
|
1108 |
+
metrics:
|
1109 |
+
- type: map_at_1
|
1110 |
+
value: 0.22586
|
1111 |
+
- type: map_at_10
|
1112 |
+
value: 0.36836
|
1113 |
+
- type: map_at_100
|
1114 |
+
value: 0.38863
|
1115 |
+
- type: map_at_1000
|
1116 |
+
value: 0.39041
|
1117 |
+
- type: map_at_3
|
1118 |
+
value: 0.32445
|
1119 |
+
- type: map_at_5
|
1120 |
+
value: 0.34951
|
1121 |
+
- type: mrr_at_1
|
1122 |
+
value: 0.44599
|
1123 |
+
- type: mrr_at_10
|
1124 |
+
value: 0.53471
|
1125 |
+
- type: mrr_at_100
|
1126 |
+
value: 0.54186
|
1127 |
+
- type: mrr_at_1000
|
1128 |
+
value: 0.54223
|
1129 |
+
- type: mrr_at_3
|
1130 |
+
value: 0.51157
|
1131 |
+
- type: mrr_at_5
|
1132 |
+
value: 0.52423
|
1133 |
+
- type: ndcg_at_1
|
1134 |
+
value: 0.44599
|
1135 |
+
- type: ndcg_at_10
|
1136 |
+
value: 0.44931
|
1137 |
+
- type: ndcg_at_100
|
1138 |
+
value: 0.51914
|
1139 |
+
- type: ndcg_at_1000
|
1140 |
+
value: 0.54674
|
1141 |
+
- type: ndcg_at_3
|
1142 |
+
value: 0.41597
|
1143 |
+
- type: ndcg_at_5
|
1144 |
+
value: 0.42611
|
1145 |
+
- type: precision_at_1
|
1146 |
+
value: 0.44599
|
1147 |
+
- type: precision_at_10
|
1148 |
+
value: 0.12346
|
1149 |
+
- type: precision_at_100
|
1150 |
+
value: 0.01951
|
1151 |
+
- type: precision_at_1000
|
1152 |
+
value: 0.00244
|
1153 |
+
- type: precision_at_3
|
1154 |
+
value: 0.27623
|
1155 |
+
- type: precision_at_5
|
1156 |
+
value: 0.20093
|
1157 |
+
- type: recall_at_1
|
1158 |
+
value: 0.22586
|
1159 |
+
- type: recall_at_10
|
1160 |
+
value: 0.5152
|
1161 |
+
- type: recall_at_100
|
1162 |
+
value: 0.77251
|
1163 |
+
- type: recall_at_1000
|
1164 |
+
value: 0.93503
|
1165 |
+
- type: recall_at_3
|
1166 |
+
value: 0.37802
|
1167 |
+
- type: recall_at_5
|
1168 |
+
value: 0.4386
|
1169 |
+
- dataset:
|
1170 |
+
type: mteb/hotpotqa
|
1171 |
+
name: MTEB HotpotQA
|
1172 |
+
config: default
|
1173 |
+
split: test
|
1174 |
+
task:
|
1175 |
+
type: Retrieval
|
1176 |
+
metrics:
|
1177 |
+
- type: map_at_1
|
1178 |
+
value: 0.38177
|
1179 |
+
- type: map_at_10
|
1180 |
+
value: 0.59021
|
1181 |
+
- type: map_at_100
|
1182 |
+
value: 0.59924
|
1183 |
+
- type: map_at_1000
|
1184 |
+
value: 0.59989
|
1185 |
+
- type: map_at_3
|
1186 |
+
value: 0.55553
|
1187 |
+
- type: map_at_5
|
1188 |
+
value: 0.57773
|
1189 |
+
- type: mrr_at_1
|
1190 |
+
value: 0.76354
|
1191 |
+
- type: mrr_at_10
|
1192 |
+
value: 0.827
|
1193 |
+
- type: mrr_at_100
|
1194 |
+
value: 0.82887
|
1195 |
+
- type: mrr_at_1000
|
1196 |
+
value: 0.82896
|
1197 |
+
- type: mrr_at_3
|
1198 |
+
value: 0.8172
|
1199 |
+
- type: mrr_at_5
|
1200 |
+
value: 0.82338
|
1201 |
+
- type: ndcg_at_1
|
1202 |
+
value: 0.76354
|
1203 |
+
- type: ndcg_at_10
|
1204 |
+
value: 0.67775
|
1205 |
+
- type: ndcg_at_100
|
1206 |
+
value: 0.70849
|
1207 |
+
- type: ndcg_at_1000
|
1208 |
+
value: 0.7215
|
1209 |
+
- type: ndcg_at_3
|
1210 |
+
value: 0.629
|
1211 |
+
- type: ndcg_at_5
|
1212 |
+
value: 0.65679
|
1213 |
+
- type: precision_at_1
|
1214 |
+
value: 0.76354
|
1215 |
+
- type: precision_at_10
|
1216 |
+
value: 0.14176
|
1217 |
+
- type: precision_at_100
|
1218 |
+
value: 0.01656
|
1219 |
+
- type: precision_at_1000
|
1220 |
+
value: 0.00183
|
1221 |
+
- type: precision_at_3
|
1222 |
+
value: 0.40113
|
1223 |
+
- type: precision_at_5
|
1224 |
+
value: 0.26255
|
1225 |
+
- type: recall_at_1
|
1226 |
+
value: 0.38177
|
1227 |
+
- type: recall_at_10
|
1228 |
+
value: 0.70878
|
1229 |
+
- type: recall_at_100
|
1230 |
+
value: 0.82822
|
1231 |
+
- type: recall_at_1000
|
1232 |
+
value: 0.91472
|
1233 |
+
- type: recall_at_3
|
1234 |
+
value: 0.60169
|
1235 |
+
- type: recall_at_5
|
1236 |
+
value: 0.65638
|
1237 |
+
- dataset:
|
1238 |
+
type: mteb/msmarco
|
1239 |
+
name: MTEB MSMARCO
|
1240 |
+
config: default
|
1241 |
+
split: dev
|
1242 |
+
task:
|
1243 |
+
type: Retrieval
|
1244 |
+
metrics:
|
1245 |
+
- type: map_at_1
|
1246 |
+
value: 0.15062
|
1247 |
+
- type: map_at_10
|
1248 |
+
value: 0.26008
|
1249 |
+
- type: map_at_100
|
1250 |
+
value: 0.27305
|
1251 |
+
- type: map_at_1000
|
1252 |
+
value: 0.27373
|
1253 |
+
- type: map_at_3
|
1254 |
+
value: 0.22236
|
1255 |
+
- type: map_at_5
|
1256 |
+
value: 0.24362
|
1257 |
+
- type: mrr_at_1
|
1258 |
+
value: 0.15444
|
1259 |
+
- type: mrr_at_10
|
1260 |
+
value: 0.26458
|
1261 |
+
- type: mrr_at_100
|
1262 |
+
value: 0.27718
|
1263 |
+
- type: mrr_at_1000
|
1264 |
+
value: 0.2778
|
1265 |
+
- type: mrr_at_3
|
1266 |
+
value: 0.22701
|
1267 |
+
- type: mrr_at_5
|
1268 |
+
value: 0.24844
|
1269 |
+
- type: ndcg_at_1
|
1270 |
+
value: 0.15444
|
1271 |
+
- type: ndcg_at_10
|
1272 |
+
value: 0.32495
|
1273 |
+
- type: ndcg_at_100
|
1274 |
+
value: 0.38957
|
1275 |
+
- type: ndcg_at_1000
|
1276 |
+
value: 0.40684
|
1277 |
+
- type: ndcg_at_3
|
1278 |
+
value: 0.24745
|
1279 |
+
- type: ndcg_at_5
|
1280 |
+
value: 0.2856
|
1281 |
+
- type: precision_at_1
|
1282 |
+
value: 0.15444
|
1283 |
+
- type: precision_at_10
|
1284 |
+
value: 0.05486
|
1285 |
+
- type: precision_at_100
|
1286 |
+
value: 0.00875
|
1287 |
+
- type: precision_at_1000
|
1288 |
+
value: 0.00102
|
1289 |
+
- type: precision_at_3
|
1290 |
+
value: 0.1086
|
1291 |
+
- type: precision_at_5
|
1292 |
+
value: 0.08441
|
1293 |
+
- type: recall_at_1
|
1294 |
+
value: 0.15062
|
1295 |
+
- type: recall_at_10
|
1296 |
+
value: 0.5272
|
1297 |
+
- type: recall_at_100
|
1298 |
+
value: 0.83006
|
1299 |
+
- type: recall_at_1000
|
1300 |
+
value: 0.96263
|
1301 |
+
- type: recall_at_3
|
1302 |
+
value: 0.31556
|
1303 |
+
- type: recall_at_5
|
1304 |
+
value: 0.40706
|
1305 |
+
- dataset:
|
1306 |
+
type: mteb/nfcorpus
|
1307 |
+
name: MTEB NFCorpus
|
1308 |
+
config: default
|
1309 |
+
split: test
|
1310 |
+
task:
|
1311 |
+
type: Retrieval
|
1312 |
+
metrics:
|
1313 |
+
- type: map_at_1
|
1314 |
+
value: 0.06126
|
1315 |
+
- type: map_at_10
|
1316 |
+
value: 0.14152
|
1317 |
+
- type: map_at_100
|
1318 |
+
value: 0.1827
|
1319 |
+
- type: map_at_1000
|
1320 |
+
value: 0.1988
|
1321 |
+
- type: map_at_3
|
1322 |
+
value: 0.10301
|
1323 |
+
- type: map_at_5
|
1324 |
+
value: 0.12085
|
1325 |
+
- type: mrr_at_1
|
1326 |
+
value: 0.47988
|
1327 |
+
- type: mrr_at_10
|
1328 |
+
value: 0.5692
|
1329 |
+
- type: mrr_at_100
|
1330 |
+
value: 0.57428
|
1331 |
+
- type: mrr_at_1000
|
1332 |
+
value: 0.57482
|
1333 |
+
- type: mrr_at_3
|
1334 |
+
value: 0.55315
|
1335 |
+
- type: mrr_at_5
|
1336 |
+
value: 0.56352
|
1337 |
+
- type: ndcg_at_1
|
1338 |
+
value: 0.45356
|
1339 |
+
- type: ndcg_at_10
|
1340 |
+
value: 0.3725
|
1341 |
+
- type: ndcg_at_100
|
1342 |
+
value: 0.34496
|
1343 |
+
- type: ndcg_at_1000
|
1344 |
+
value: 0.43374
|
1345 |
+
- type: ndcg_at_3
|
1346 |
+
value: 0.42643
|
1347 |
+
- type: ndcg_at_5
|
1348 |
+
value: 0.40882
|
1349 |
+
- type: precision_at_1
|
1350 |
+
value: 0.47368
|
1351 |
+
- type: precision_at_10
|
1352 |
+
value: 0.2774
|
1353 |
+
- type: precision_at_100
|
1354 |
+
value: 0.09071
|
1355 |
+
- type: precision_at_1000
|
1356 |
+
value: 0.02226
|
1357 |
+
- type: precision_at_3
|
1358 |
+
value: 0.40144
|
1359 |
+
- type: precision_at_5
|
1360 |
+
value: 0.35913
|
1361 |
+
- type: recall_at_1
|
1362 |
+
value: 0.06126
|
1363 |
+
- type: recall_at_10
|
1364 |
+
value: 0.18427
|
1365 |
+
- type: recall_at_100
|
1366 |
+
value: 0.35018
|
1367 |
+
- type: recall_at_1000
|
1368 |
+
value: 0.6766
|
1369 |
+
- type: recall_at_3
|
1370 |
+
value: 0.11706
|
1371 |
+
- type: recall_at_5
|
1372 |
+
value: 0.14419
|
1373 |
+
- dataset:
|
1374 |
+
type: mteb/nq
|
1375 |
+
name: MTEB NQ
|
1376 |
+
config: default
|
1377 |
+
split: test
|
1378 |
+
task:
|
1379 |
+
type: Retrieval
|
1380 |
+
metrics:
|
1381 |
+
- type: map_at_1
|
1382 |
+
value: 0.33053
|
1383 |
+
- type: map_at_10
|
1384 |
+
value: 0.49739
|
1385 |
+
- type: map_at_100
|
1386 |
+
value: 0.50626
|
1387 |
+
- type: map_at_1000
|
1388 |
+
value: 0.50647
|
1389 |
+
- type: map_at_3
|
1390 |
+
value: 0.4491
|
1391 |
+
- type: map_at_5
|
1392 |
+
value: 0.4783
|
1393 |
+
- type: mrr_at_1
|
1394 |
+
value: 0.37254
|
1395 |
+
- type: mrr_at_10
|
1396 |
+
value: 0.52222
|
1397 |
+
- type: mrr_at_100
|
1398 |
+
value: 0.52855
|
1399 |
+
- type: mrr_at_1000
|
1400 |
+
value: 0.52869
|
1401 |
+
- type: mrr_at_3
|
1402 |
+
value: 0.48445
|
1403 |
+
- type: mrr_at_5
|
1404 |
+
value: 0.50834
|
1405 |
+
- type: ndcg_at_1
|
1406 |
+
value: 0.37254
|
1407 |
+
- type: ndcg_at_10
|
1408 |
+
value: 0.58044
|
1409 |
+
- type: ndcg_at_100
|
1410 |
+
value: 0.61613
|
1411 |
+
- type: ndcg_at_1000
|
1412 |
+
value: 0.62046
|
1413 |
+
- type: ndcg_at_3
|
1414 |
+
value: 0.49219
|
1415 |
+
- type: ndcg_at_5
|
1416 |
+
value: 0.54037
|
1417 |
+
- type: precision_at_1
|
1418 |
+
value: 0.37254
|
1419 |
+
- type: precision_at_10
|
1420 |
+
value: 0.09655
|
1421 |
+
- type: precision_at_100
|
1422 |
+
value: 0.01167
|
1423 |
+
- type: precision_at_1000
|
1424 |
+
value: 0.00121
|
1425 |
+
- type: precision_at_3
|
1426 |
+
value: 0.22538
|
1427 |
+
- type: precision_at_5
|
1428 |
+
value: 0.16344
|
1429 |
+
- type: recall_at_1
|
1430 |
+
value: 0.33053
|
1431 |
+
- type: recall_at_10
|
1432 |
+
value: 0.8076
|
1433 |
+
- type: recall_at_100
|
1434 |
+
value: 0.95862
|
1435 |
+
- type: recall_at_1000
|
1436 |
+
value: 0.99044
|
1437 |
+
- type: recall_at_3
|
1438 |
+
value: 0.58157
|
1439 |
+
- type: recall_at_5
|
1440 |
+
value: 0.69235
|
1441 |
+
- dataset:
|
1442 |
+
type: mteb/quora
|
1443 |
+
name: MTEB QuoraRetrieval
|
1444 |
+
config: default
|
1445 |
+
split: test
|
1446 |
+
task:
|
1447 |
+
type: Retrieval
|
1448 |
+
metrics:
|
1449 |
+
- type: map_at_1
|
1450 |
+
value: 0.70056
|
1451 |
+
- type: map_at_10
|
1452 |
+
value: 0.84009
|
1453 |
+
- type: map_at_100
|
1454 |
+
value: 0.84661
|
1455 |
+
- type: map_at_1000
|
1456 |
+
value: 0.84678
|
1457 |
+
- type: map_at_3
|
1458 |
+
value: 0.81036
|
1459 |
+
- type: map_at_5
|
1460 |
+
value: 0.82923
|
1461 |
+
- type: mrr_at_1
|
1462 |
+
value: 0.8062
|
1463 |
+
- type: mrr_at_10
|
1464 |
+
value: 0.86971
|
1465 |
+
- type: mrr_at_100
|
1466 |
+
value: 0.87079
|
1467 |
+
- type: mrr_at_1000
|
1468 |
+
value: 0.8708
|
1469 |
+
- type: mrr_at_3
|
1470 |
+
value: 0.85943
|
1471 |
+
- type: mrr_at_5
|
1472 |
+
value: 0.86664
|
1473 |
+
- type: ndcg_at_1
|
1474 |
+
value: 0.8064
|
1475 |
+
- type: ndcg_at_10
|
1476 |
+
value: 0.87821
|
1477 |
+
- type: ndcg_at_100
|
1478 |
+
value: 0.89091
|
1479 |
+
- type: ndcg_at_1000
|
1480 |
+
value: 0.89202
|
1481 |
+
- type: ndcg_at_3
|
1482 |
+
value: 0.849
|
1483 |
+
- type: ndcg_at_5
|
1484 |
+
value: 0.86544
|
1485 |
+
- type: precision_at_1
|
1486 |
+
value: 0.8064
|
1487 |
+
- type: precision_at_10
|
1488 |
+
value: 0.13347
|
1489 |
+
- type: precision_at_100
|
1490 |
+
value: 0.01527
|
1491 |
+
- type: precision_at_1000
|
1492 |
+
value: 0.00157
|
1493 |
+
- type: precision_at_3
|
1494 |
+
value: 0.37153
|
1495 |
+
- type: precision_at_5
|
1496 |
+
value: 0.2448
|
1497 |
+
- type: recall_at_1
|
1498 |
+
value: 0.70056
|
1499 |
+
- type: recall_at_10
|
1500 |
+
value: 0.95148
|
1501 |
+
- type: recall_at_100
|
1502 |
+
value: 0.99474
|
1503 |
+
- type: recall_at_1000
|
1504 |
+
value: 0.99977
|
1505 |
+
- type: recall_at_3
|
1506 |
+
value: 0.86773
|
1507 |
+
- type: recall_at_5
|
1508 |
+
value: 0.91396
|
1509 |
+
- dataset:
|
1510 |
+
type: mteb/scidocs
|
1511 |
+
name: MTEB SCIDOCS
|
1512 |
+
config: default
|
1513 |
+
split: test
|
1514 |
+
task:
|
1515 |
+
type: Retrieval
|
1516 |
+
metrics:
|
1517 |
+
- type: map_at_1
|
1518 |
+
value: 0.05737
|
1519 |
+
- type: map_at_10
|
1520 |
+
value: 0.14896
|
1521 |
+
- type: map_at_100
|
1522 |
+
value: 0.17646
|
1523 |
+
- type: map_at_1000
|
1524 |
+
value: 0.1803
|
1525 |
+
- type: map_at_3
|
1526 |
+
value: 0.10474
|
1527 |
+
- type: map_at_5
|
1528 |
+
value: 0.12656
|
1529 |
+
- type: mrr_at_1
|
1530 |
+
value: 0.281
|
1531 |
+
- type: mrr_at_10
|
1532 |
+
value: 0.39579
|
1533 |
+
- type: mrr_at_100
|
1534 |
+
value: 0.40687
|
1535 |
+
- type: mrr_at_1000
|
1536 |
+
value: 0.40722
|
1537 |
+
- type: mrr_at_3
|
1538 |
+
value: 0.35917
|
1539 |
+
- type: mrr_at_5
|
1540 |
+
value: 0.38097
|
1541 |
+
- type: ndcg_at_1
|
1542 |
+
value: 0.281
|
1543 |
+
- type: ndcg_at_10
|
1544 |
+
value: 0.24146
|
1545 |
+
- type: ndcg_at_100
|
1546 |
+
value: 0.339
|
1547 |
+
- type: ndcg_at_1000
|
1548 |
+
value: 0.39728
|
1549 |
+
- type: ndcg_at_3
|
1550 |
+
value: 0.22721
|
1551 |
+
- type: ndcg_at_5
|
1552 |
+
value: 0.20015
|
1553 |
+
- type: precision_at_1
|
1554 |
+
value: 0.281
|
1555 |
+
- type: precision_at_10
|
1556 |
+
value: 0.1254
|
1557 |
+
- type: precision_at_100
|
1558 |
+
value: 0.02651
|
1559 |
+
- type: precision_at_1000
|
1560 |
+
value: 0.00404
|
1561 |
+
- type: precision_at_3
|
1562 |
+
value: 0.212
|
1563 |
+
- type: precision_at_5
|
1564 |
+
value: 0.176
|
1565 |
+
- type: recall_at_1
|
1566 |
+
value: 0.05737
|
1567 |
+
- type: recall_at_10
|
1568 |
+
value: 0.254
|
1569 |
+
- type: recall_at_100
|
1570 |
+
value: 0.53772
|
1571 |
+
- type: recall_at_1000
|
1572 |
+
value: 0.82013
|
1573 |
+
- type: recall_at_3
|
1574 |
+
value: 0.12897
|
1575 |
+
- type: recall_at_5
|
1576 |
+
value: 0.17855
|
1577 |
+
- dataset:
|
1578 |
+
type: mteb/scifact
|
1579 |
+
name: MTEB SciFact
|
1580 |
+
config: default
|
1581 |
+
split: test
|
1582 |
+
task:
|
1583 |
+
type: Retrieval
|
1584 |
+
metrics:
|
1585 |
+
- type: map_at_1
|
1586 |
+
value: 0.60011
|
1587 |
+
- type: map_at_10
|
1588 |
+
value: 0.70101
|
1589 |
+
- type: map_at_100
|
1590 |
+
value: 0.70687
|
1591 |
+
- type: map_at_1000
|
1592 |
+
value: 0.70699
|
1593 |
+
- type: map_at_3
|
1594 |
+
value: 0.67135
|
1595 |
+
- type: map_at_5
|
1596 |
+
value: 0.6878
|
1597 |
+
- type: mrr_at_1
|
1598 |
+
value: 0.62667
|
1599 |
+
- type: mrr_at_10
|
1600 |
+
value: 0.71022
|
1601 |
+
- type: mrr_at_100
|
1602 |
+
value: 0.71484
|
1603 |
+
- type: mrr_at_1000
|
1604 |
+
value: 0.71496
|
1605 |
+
- type: mrr_at_3
|
1606 |
+
value: 0.68944
|
1607 |
+
- type: mrr_at_5
|
1608 |
+
value: 0.69961
|
1609 |
+
- type: ndcg_at_1
|
1610 |
+
value: 0.62667
|
1611 |
+
- type: ndcg_at_10
|
1612 |
+
value: 0.7472
|
1613 |
+
- type: ndcg_at_100
|
1614 |
+
value: 0.76961
|
1615 |
+
- type: ndcg_at_1000
|
1616 |
+
value: 0.77294
|
1617 |
+
- type: ndcg_at_3
|
1618 |
+
value: 0.69776
|
1619 |
+
- type: ndcg_at_5
|
1620 |
+
value: 0.71964
|
1621 |
+
- type: precision_at_1
|
1622 |
+
value: 0.62667
|
1623 |
+
- type: precision_at_10
|
1624 |
+
value: 0.09933
|
1625 |
+
- type: precision_at_100
|
1626 |
+
value: 0.01103
|
1627 |
+
- type: precision_at_1000
|
1628 |
+
value: 0.00113
|
1629 |
+
- type: precision_at_3
|
1630 |
+
value: 0.27
|
1631 |
+
- type: precision_at_5
|
1632 |
+
value: 0.178
|
1633 |
+
- type: recall_at_1
|
1634 |
+
value: 0.60011
|
1635 |
+
- type: recall_at_10
|
1636 |
+
value: 0.878
|
1637 |
+
- type: recall_at_100
|
1638 |
+
value: 0.97333
|
1639 |
+
- type: recall_at_1000
|
1640 |
+
value: 1
|
1641 |
+
- type: recall_at_3
|
1642 |
+
value: 0.74839
|
1643 |
+
- type: recall_at_5
|
1644 |
+
value: 0.80028
|
1645 |
+
- dataset:
|
1646 |
+
type: mteb/touche2020
|
1647 |
+
name: MTEB Touche2020
|
1648 |
+
config: default
|
1649 |
+
split: test
|
1650 |
+
task:
|
1651 |
+
type: Retrieval
|
1652 |
+
metrics:
|
1653 |
+
- type: map_at_1
|
1654 |
+
value: 0.02152
|
1655 |
+
- type: map_at_10
|
1656 |
+
value: 0.07747
|
1657 |
+
- type: map_at_100
|
1658 |
+
value: 0.1364
|
1659 |
+
- type: map_at_1000
|
1660 |
+
value: 0.15235
|
1661 |
+
- type: map_at_3
|
1662 |
+
value: 0.04103
|
1663 |
+
- type: map_at_5
|
1664 |
+
value: 0.05482
|
1665 |
+
- type: mrr_at_1
|
1666 |
+
value: 0.26531
|
1667 |
+
- type: mrr_at_10
|
1668 |
+
value: 0.41399
|
1669 |
+
- type: mrr_at_100
|
1670 |
+
value: 0.43047
|
1671 |
+
- type: mrr_at_1000
|
1672 |
+
value: 0.43047
|
1673 |
+
- type: mrr_at_3
|
1674 |
+
value: 0.38776
|
1675 |
+
- type: mrr_at_5
|
1676 |
+
value: 0.40612
|
1677 |
+
- type: ndcg_at_1
|
1678 |
+
value: 0.23469
|
1679 |
+
- type: ndcg_at_10
|
1680 |
+
value: 0.20147
|
1681 |
+
- type: ndcg_at_100
|
1682 |
+
value: 0.3279
|
1683 |
+
- type: ndcg_at_1000
|
1684 |
+
value: 0.45324
|
1685 |
+
- type: ndcg_at_3
|
1686 |
+
value: 0.22555
|
1687 |
+
- type: ndcg_at_5
|
1688 |
+
value: 0.2097
|
1689 |
+
- type: precision_at_1
|
1690 |
+
value: 0.26531
|
1691 |
+
- type: precision_at_10
|
1692 |
+
value: 0.17755
|
1693 |
+
- type: precision_at_100
|
1694 |
+
value: 0.07082
|
1695 |
+
- type: precision_at_1000
|
1696 |
+
value: 0.01547
|
1697 |
+
- type: precision_at_3
|
1698 |
+
value: 0.2449
|
1699 |
+
- type: precision_at_5
|
1700 |
+
value: 0.21633
|
1701 |
+
- type: recall_at_1
|
1702 |
+
value: 0.02152
|
1703 |
+
- type: recall_at_10
|
1704 |
+
value: 0.13331
|
1705 |
+
- type: recall_at_100
|
1706 |
+
value: 0.4535
|
1707 |
+
- type: recall_at_1000
|
1708 |
+
value: 0.83447
|
1709 |
+
- type: recall_at_3
|
1710 |
+
value: 0.05531
|
1711 |
+
- type: recall_at_5
|
1712 |
+
value: 0.08029
|
1713 |
+
- dataset:
|
1714 |
+
type: mteb/trec-covid
|
1715 |
+
name: MTEB TRECCOVID
|
1716 |
+
config: default
|
1717 |
+
split: test
|
1718 |
+
task:
|
1719 |
+
type: Retrieval
|
1720 |
+
metrics:
|
1721 |
+
- type: map_at_1
|
1722 |
+
value: 0.00202
|
1723 |
+
- type: map_at_10
|
1724 |
+
value: 0.01727
|
1725 |
+
- type: map_at_100
|
1726 |
+
value: 0.10906
|
1727 |
+
- type: map_at_1000
|
1728 |
+
value: 0.2894
|
1729 |
+
- type: map_at_3
|
1730 |
+
value: 0.00553
|
1731 |
+
- type: map_at_5
|
1732 |
+
value: 0.00924
|
1733 |
+
- type: mrr_at_1
|
1734 |
+
value: 0.74
|
1735 |
+
- type: mrr_at_10
|
1736 |
+
value: 0.85667
|
1737 |
+
- type: mrr_at_100
|
1738 |
+
value: 0.85667
|
1739 |
+
- type: mrr_at_1000
|
1740 |
+
value: 0.85667
|
1741 |
+
- type: mrr_at_3
|
1742 |
+
value: 0.85667
|
1743 |
+
- type: mrr_at_5
|
1744 |
+
value: 0.85667
|
1745 |
+
- type: ndcg_at_1
|
1746 |
+
value: 0.66
|
1747 |
+
- type: ndcg_at_10
|
1748 |
+
value: 0.69259
|
1749 |
+
- type: ndcg_at_100
|
1750 |
+
value: 0.57274
|
1751 |
+
- type: ndcg_at_1000
|
1752 |
+
value: 0.55462
|
1753 |
+
- type: ndcg_at_3
|
1754 |
+
value: 0.70654
|
1755 |
+
- type: ndcg_at_5
|
1756 |
+
value: 0.71611
|
1757 |
+
- type: precision_at_1
|
1758 |
+
value: 0.74
|
1759 |
+
- type: precision_at_10
|
1760 |
+
value: 0.748
|
1761 |
+
- type: precision_at_100
|
1762 |
+
value: 0.5962
|
1763 |
+
- type: precision_at_1000
|
1764 |
+
value: 0.24842
|
1765 |
+
- type: precision_at_3
|
1766 |
+
value: 0.77333
|
1767 |
+
- type: precision_at_5
|
1768 |
+
value: 0.788
|
1769 |
+
- type: recall_at_1
|
1770 |
+
value: 0.00202
|
1771 |
+
- type: recall_at_10
|
1772 |
+
value: 0.02001
|
1773 |
+
- type: recall_at_100
|
1774 |
+
value: 0.14801
|
1775 |
+
- type: recall_at_1000
|
1776 |
+
value: 0.53939
|
1777 |
+
- type: recall_at_3
|
1778 |
+
value: 0.00609
|
1779 |
+
- type: recall_at_5
|
1780 |
+
value: 0.01048
|
1781 |
+
pipeline_tag: sentence-similarity
|
1782 |
+
---
|
1783 |
+
# Granite-Embedding-125m-English
|
1784 |
+
|
1785 |
+
**Model Summary:**
|
1786 |
+
Granite-Embedding-125m-English is a 125M parameter dense biencoder embedding model from the Granite Embeddings suite that can be used to generate high quality text embeddings. This model produces embedding vectors of size 768. Compared to most other open-source models, this model was only trained using open-source relevance-pair datasets with permissive, enterprise-friendly license, plus IBM collected and generated datasets. While maintaining competitive scores on academic benchmarks such as BEIR, this model also performs well on many enterprise use cases. This model is developed using retrieval oriented pretraining, contrastive finetuning and knowledge distillation.
|
1787 |
+
|
1788 |
+
- **Developers:** Granite Embedding Team, IBM
|
1789 |
+
- **GitHub Repository:** [ibm-granite/granite-embedding-models](https://github.com/ibm-granite/granite-embedding-models)
|
1790 |
+
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
|
1791 |
+
- **Paper:** Coming Soon
|
1792 |
+
- **Release Date**: December 18th, 2024
|
1793 |
+
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
1794 |
+
|
1795 |
+
**Supported Languages:**
|
1796 |
+
English.
|
1797 |
+
|
1798 |
+
**Intended use:**
|
1799 |
+
The model is designed to produce fixed length vector representations for a given text, which can be used for text similarity, retrieval, and search applications.
|
1800 |
+
|
1801 |
+
**Usage with Sentence Transformers:**
|
1802 |
+
The model is compatible with SentenceTransformer library and is very easy to use:
|
1803 |
+
|
1804 |
+
First, install the sentence transformers library
|
1805 |
+
```shell
|
1806 |
+
pip install sentence_transformers
|
1807 |
+
```
|
1808 |
+
|
1809 |
+
The model can then be used to encode pairs of text and find the similarity between their representations
|
1810 |
+
|
1811 |
+
```python
|
1812 |
+
from sentence_transformers import SentenceTransformer, util
|
1813 |
+
|
1814 |
+
model_path = "ibm-granite/granite-embedding-125m-english"
|
1815 |
+
# Load the Sentence Transformer model
|
1816 |
+
model = SentenceTransformer(model_path)
|
1817 |
+
|
1818 |
+
input_queries = [
|
1819 |
+
' Who made the song My achy breaky heart? ',
|
1820 |
+
'summit define'
|
1821 |
+
]
|
1822 |
+
|
1823 |
+
input_passages = [
|
1824 |
+
"Achy Breaky Heart is a country song written by Don Von Tress. Originally titled Don't Tell My Heart and performed by The Marcy Brothers in 1991. ",
|
1825 |
+
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
|
1826 |
+
]
|
1827 |
+
|
1828 |
+
# encode queries and passages
|
1829 |
+
query_embeddings = model.encode(input_queries)
|
1830 |
+
passage_embeddings = model.encode(input_passages)
|
1831 |
+
|
1832 |
+
# calculate cosine similarity
|
1833 |
+
print(util.cos_sim(query_embeddings, passage_embeddings))
|
1834 |
+
```
|
1835 |
+
|
1836 |
+
**Usage with Huggingface Transformers:**
|
1837 |
+
This is a simple example of how to use the Granite-Embedding-125m-English model with the Transformers library and PyTorch.
|
1838 |
+
|
1839 |
+
First, install the required libraries
|
1840 |
+
```shell
|
1841 |
+
pip install transformers torch
|
1842 |
+
```
|
1843 |
+
|
1844 |
+
The model can then be used to encode pairs of text
|
1845 |
+
|
1846 |
+
```python
|
1847 |
+
import torch
|
1848 |
+
from transformers import AutoModel, AutoTokenizer
|
1849 |
+
|
1850 |
+
model_path = "ibm-granite/granite-embedding-125m-english"
|
1851 |
+
|
1852 |
+
# Load the model and tokenizer
|
1853 |
+
model = AutoModel.from_pretrained(model_path)
|
1854 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
1855 |
+
model.eval()
|
1856 |
+
|
1857 |
+
input_queries = [
|
1858 |
+
' Who made the song My achy breaky heart? ',
|
1859 |
+
'summit define'
|
1860 |
+
]
|
1861 |
+
|
1862 |
+
# tokenize inputs
|
1863 |
+
tokenized_queries = tokenizer(input_queries, padding=True, truncation=True, return_tensors='pt')
|
1864 |
+
|
1865 |
+
# encode queries
|
1866 |
+
with torch.no_grad():
|
1867 |
+
# Queries
|
1868 |
+
model_output = model(**tokenized_queries)
|
1869 |
+
# Perform pooling. granite-embedding-125m-english uses CLS Pooling
|
1870 |
+
query_embeddings = model_output[0][:, 0]
|
1871 |
+
|
1872 |
+
# normalize the embeddings
|
1873 |
+
query_embeddings = torch.nn.functional.normalize(query_embeddings, dim=1)
|
1874 |
+
|
1875 |
+
```
|
1876 |
+
**Evaluation:**
|
1877 |
+
|
1878 |
+
The performance of the Granite-Embedding-125M-English model on MTEB Retrieval (i.e., BEIR) and code retrieval (CoIR) benchmarks is reported below.
|
1879 |
+
|
1880 |
+
| Model | Paramters (M)| Embedding Dimension | MTEB Retrieval (15) | CoIR (10) |
|
1881 |
+
|---------------------------------|:------------:|:-------------------:|:-------------------: |:----------:|
|
1882 |
+
|granite-embedding-125m-english |125 |768 |52.3 |50.3 |
|
1883 |
+
|
1884 |
+
**Model Architecture:**
|
1885 |
+
Granite-Embedding-125m-English is based on an encoder-only RoBERTa like transformer architecture, trained internally at IBM Research.
|
1886 |
+
|
1887 |
+
| Model | granite-embedding-30m-english | granite-embedding-125m-english | granite-embedding-107m-multilingual | granite-embedding-278m-multilingual |
|
1888 |
+
| :--------- | :-------:| :--------: | :-----:| :-----:|
|
1889 |
+
| Embedding size | 384 | **768** | 384 | 768 |
|
1890 |
+
| Number of layers | 6 | **12** | 6 | 12 |
|
1891 |
+
| Number of attention heads | 12 | **12** | 12 | 12 |
|
1892 |
+
| Intermediate size | 1536 | **3072** | 1536 | 3072 |
|
1893 |
+
| Activation Function | GeLU | **GeLU** | GeLU | GeLU |
|
1894 |
+
| Vocabulary Size | 50265| **50265** | 250002 | 250002 |
|
1895 |
+
| Max. Sequence Length | 512 | **512** | 512 | 512 |
|
1896 |
+
| # Parameters | 30M | **125M** | 107M | 278M |
|
1897 |
+
|
1898 |
+
|
1899 |
+
**Training Data:**
|
1900 |
+
Overall, the training data consists of four key sources: (1) unsupervised title-body paired data scraped from the web, (2) publicly available paired with permissive, enterprise-friendly license, (3) IBM-internal paired data targetting specific technical domains, and (4) IBM-generated synthetic data. The data is listed below:
|
1901 |
+
|
1902 |
+
| **Dataset** | **Num. Pairs** |
|
1903 |
+
|----------------------------------------------------|:---------------:|
|
1904 |
+
| SPECTER citation triplets | 684,100 |
|
1905 |
+
| Stack Exchange Duplicate questions (titles) | 304,525 |
|
1906 |
+
| Stack Exchange Duplicate questions (bodies) | 250,519 |
|
1907 |
+
| Stack Exchange Duplicate questions (titles+bodies) | 250,460 |
|
1908 |
+
| Natural Questions (NQ) | 100,231 |
|
1909 |
+
| SQuAD2.0 | 87,599 |
|
1910 |
+
| PAQ (Question, Answer) pairs | 64,371,441 |
|
1911 |
+
| Stack Exchange (Title, Answer) pairs | 4,067,139 |
|
1912 |
+
| Stack Exchange (Title, Body) pairs | 23,978,013 |
|
1913 |
+
| Stack Exchange (Title+Body, Answer) pairs | 187,195 |
|
1914 |
+
| S2ORC Citation pairs (Titles) | 52,603,982 |
|
1915 |
+
| S2ORC (Title, Abstract) | 41,769,185 |
|
1916 |
+
| S2ORC (Citations, abstracts) | 52,603,982 |
|
1917 |
+
| WikiAnswers Duplicate question pairs | 77,427,422 |
|
1918 |
+
| SearchQA | 582,261 |
|
1919 |
+
| HotpotQA | 85,000 |
|
1920 |
+
| Fever | 109,810 |
|
1921 |
+
| Arxiv | 2,358,545 |
|
1922 |
+
| Wikipedia | 20,745,403 |
|
1923 |
+
| PubMed | 20,000,000 |
|
1924 |
+
| Miracl En Pairs | 9,016 |
|
1925 |
+
| DBPedia Title-Body Pairs | 4,635,922 |
|
1926 |
+
| Synthetic: Query-Wikipedia Passage | 1,879,093 |
|
1927 |
+
| Synthetic: Fact Verification | 9,888 |
|
1928 |
+
| IBM Internal Triples | 40,290 |
|
1929 |
+
| IBM Internal Title-Body Pairs | 1,524,586 |
|
1930 |
+
|
1931 |
+
Notably, we do not use the popular MS-MARCO retrieval dataset in our training corpus due to its non-commercial license, while other open-source models train on this dataset due to its high quality.
|
1932 |
+
|
1933 |
+
**Infrastructure:**
|
1934 |
+
We train Granite Embedding Models using IBM's computing cluster, Cognitive Compute Cluster, which is outfitted with NVIDIA A100 80gb GPUs. This cluster provides a scalable and efficient infrastructure for training our models over multiple GPUs.
|
1935 |
+
|
1936 |
+
**Ethical Considerations and Limitations:**
|
1937 |
+
The data used to train the base language model was filtered to remove text containing hate, abuse, and profanity. Granite-Embedding-125m-English is trained only for English texts, and has a context length of 512 tokens (longer texts will be truncated to this size).
|
1938 |
+
|
1939 |
+
|
1940 |
+
<!-- ## Citation
|
1941 |
+
```
|
1942 |
+
@misc{granite-embedding-models,
|
1943 |
+
author = {author 1, author2, ...},
|
1944 |
+
title = {},
|
1945 |
+
journal = {},
|
1946 |
+
volume = {},
|
1947 |
+
year = {2024},
|
1948 |
+
url = {https://arxiv.org/abs/0000.00000},
|
1949 |
+
}
|
1950 |
+
``` -->
|
config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"layer_norm_epsilon": 1e-05,
|
5 |
+
"multi_query_attention": false,
|
6 |
+
"unk_token": "<unk>"
|
7 |
+
}
|
model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5540cde121e37f10ba85db71ff244844ddd7eb50f7d3d1e515faa020a8baa24c
|
3 |
+
size 125709805
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"50264": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"errors": "replace",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"sep_token": "</s>",
|
55 |
+
"stride": 0,
|
56 |
+
"tokenizer_class": "RobertaTokenizer",
|
57 |
+
"trim_offsets": true,
|
58 |
+
"truncation_side": "right",
|
59 |
+
"truncation_strategy": "longest_first",
|
60 |
+
"unk_token": "<unk>"
|
61 |
+
}
|
vocabulary.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|