File size: 2,695 Bytes
6c09e08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
resume: false
device: cuda
use_amp: false
seed: 1000
dataset_repo_id: jmercat/koch_feed_cat
video_backend: pyav
training:
offline_steps: 16000
num_workers: 4
batch_size: 64
eval_freq: -1
log_freq: 200
save_checkpoint: true
save_freq: 1600
online_steps: 0
online_rollout_n_episodes: 1
online_rollout_batch_size: 1
online_steps_between_rollouts: 1
online_sampling_ratio: 0.5
online_env_seed: null
online_buffer_capacity: null
online_buffer_seed_size: 0
do_online_rollout_async: false
image_transforms:
enable: false
max_num_transforms: 3
random_order: false
brightness:
weight: 1
min_max:
- 0.8
- 1.2
contrast:
weight: 1
min_max:
- 0.8
- 1.2
saturation:
weight: 1
min_max:
- 0.5
- 1.5
hue:
weight: 1
min_max:
- -0.05
- 0.05
sharpness:
weight: 1
min_max:
- 0.8
- 1.2
grad_clip_norm: 10
lr: 0.0001
lr_scheduler: cosine
lr_warmup_steps: 500
adam_betas:
- 0.95
- 0.999
adam_eps: 1.0e-08
adam_weight_decay: 1.0e-06
delta_timestamps:
action:
- 0.0
- 0.03333333333333333
- 0.06666666666666667
- 0.1
- 0.13333333333333333
- 0.16666666666666666
- 0.2
- 0.23333333333333334
- 0.26666666666666666
- 0.3
- 0.3333333333333333
- 0.36666666666666664
- 0.4
- 0.43333333333333335
- 0.4666666666666667
- 0.5
eval:
n_episodes: 5
batch_size: 5
use_async_envs: false
wandb:
enable: true
disable_artifact: false
project: lerobot
notes: ''
fps: 30
env:
name: real_world
task: null
state_dim: 6
action_dim: 6
fps: ${fps}
policy:
name: diffusion
n_obs_steps: 1
horizon: 16
n_action_steps: 8
input_shapes:
observation.images.phone:
- 3
- 480
- 640
observation.state:
- ${env.state_dim}
output_shapes:
action:
- ${env.action_dim}
input_normalization_modes:
observation.images.phone: mean_std
observation.state: mean_std
output_normalization_modes:
action: mean_std
vision_backbone: resnet18
crop_shape:
- 432
- 576
crop_is_random: true
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
use_group_norm: false
spatial_softmax_num_keypoints: 32
down_dims:
- 512
- 1024
- 2048
kernel_size: 5
n_groups: 8
diffusion_step_embed_dim: 128
use_film_scale_modulation: true
noise_scheduler_type: DDPM
num_train_timesteps: 100
beta_schedule: squaredcos_cap_v2
beta_start: 0.0001
beta_end: 0.02
prediction_type: sample
clip_sample: true
clip_sample_range: 1.0
num_inference_steps: null
do_mask_loss_for_padding: false
|