File size: 5,088 Bytes
8f8d781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
resume: false
device: cuda
use_amp: false
seed: 1000
dataset_repo_id: jmercat/koch_feed_cat_2
video_backend: pyav
training:
offline_steps: 16000
num_workers: 4
batch_size: 64
eval_freq: -1
log_freq: 200
save_checkpoint: true
save_freq: 1600
online_steps: 0
online_rollout_n_episodes: 1
online_rollout_batch_size: 1
online_steps_between_rollouts: 1
online_sampling_ratio: 0.5
online_env_seed: null
online_buffer_capacity: null
online_buffer_seed_size: 0
do_online_rollout_async: false
image_transforms:
enable: false
max_num_transforms: 3
random_order: false
brightness:
weight: 1
min_max:
- 0.8
- 1.2
contrast:
weight: 1
min_max:
- 0.8
- 1.2
saturation:
weight: 1
min_max:
- 0.5
- 1.5
hue:
weight: 1
min_max:
- -0.05
- 0.05
sharpness:
weight: 1
min_max:
- 0.8
- 1.2
grad_clip_norm: 10
lr: 0.0001
lr_scheduler: cosine
lr_warmup_steps: 500
adam_betas:
- 0.95
- 0.999
adam_eps: 1.0e-08
adam_weight_decay: 1.0e-06
delta_timestamps:
action:
- 0.0
- 0.03333333333333333
- 0.06666666666666667
- 0.1
- 0.13333333333333333
- 0.16666666666666666
- 0.2
- 0.23333333333333334
- 0.26666666666666666
- 0.3
- 0.3333333333333333
- 0.36666666666666664
- 0.4
- 0.43333333333333335
- 0.4666666666666667
- 0.5
- 0.5333333333333333
- 0.5666666666666667
- 0.6
- 0.6333333333333333
- 0.6666666666666666
- 0.7
- 0.7333333333333333
- 0.7666666666666667
- 0.8
- 0.8333333333333334
- 0.8666666666666667
- 0.9
- 0.9333333333333333
- 0.9666666666666667
- 1.0
- 1.0333333333333334
- 1.0666666666666667
- 1.1
- 1.1333333333333333
- 1.1666666666666667
- 1.2
- 1.2333333333333334
- 1.2666666666666666
- 1.3
- 1.3333333333333333
- 1.3666666666666667
- 1.4
- 1.4333333333333333
- 1.4666666666666666
- 1.5
- 1.5333333333333334
- 1.5666666666666667
- 1.6
- 1.6333333333333333
- 1.6666666666666667
- 1.7
- 1.7333333333333334
- 1.7666666666666666
- 1.8
- 1.8333333333333333
- 1.8666666666666667
- 1.9
- 1.9333333333333333
- 1.9666666666666666
- 2.0
- 2.033333333333333
- 2.066666666666667
- 2.1
- 2.1333333333333333
- 2.1666666666666665
- 2.2
- 2.2333333333333334
- 2.2666666666666666
- 2.3
- 2.3333333333333335
- 2.3666666666666667
- 2.4
- 2.433333333333333
- 2.466666666666667
- 2.5
- 2.533333333333333
- 2.566666666666667
- 2.6
- 2.6333333333333333
- 2.6666666666666665
- 2.7
- 2.7333333333333334
- 2.7666666666666666
- 2.8
- 2.8333333333333335
- 2.8666666666666667
- 2.9
- 2.933333333333333
- 2.966666666666667
- 3.0
- 3.033333333333333
- 3.066666666666667
- 3.1
- 3.1333333333333333
- 3.1666666666666665
- 3.2
- 3.2333333333333334
- 3.2666666666666666
- 3.3
- 3.3333333333333335
- 3.3666666666666667
- 3.4
- 3.433333333333333
- 3.466666666666667
- 3.5
- 3.533333333333333
- 3.566666666666667
- 3.6
- 3.6333333333333333
- 3.6666666666666665
- 3.7
- 3.7333333333333334
- 3.7666666666666666
- 3.8
- 3.8333333333333335
- 3.8666666666666667
- 3.9
- 3.933333333333333
- 3.966666666666667
- 4.0
- 4.033333333333333
- 4.066666666666666
- 4.1
- 4.133333333333334
- 4.166666666666667
- 4.2
- 4.233333333333333
eval:
n_episodes: 5
batch_size: 5
use_async_envs: false
wandb:
enable: true
disable_artifact: false
project: lerobot
notes: ''
fps: 30
env:
name: real_world
task: null
state_dim: 6
action_dim: 6
fps: ${fps}
override_dataset_stats:
observation.images.phone:
mean:
- - - 0.485
- - - 0.456
- - - 0.406
std:
- - - 0.229
- - - 0.224
- - - 0.225
policy:
name: diffusion
n_obs_steps: 1
horizon: 128
n_action_steps: 32
input_shapes:
observation.images.phone:
- 3
- 480
- 640
observation.state:
- ${env.state_dim}
output_shapes:
action:
- ${env.action_dim}
input_normalization_modes:
observation.images.phone: mean_std
observation.state: mean_std
output_normalization_modes:
action: mean_std
vision_backbone: resnet18
crop_shape:
- 432
- 576
crop_is_random: true
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
use_group_norm: false
spatial_softmax_num_keypoints: 32
down_dims:
- 512
- 512
- 512
kernel_size: 5
n_groups: 8
diffusion_step_embed_dim: 128
use_film_scale_modulation: true
noise_scheduler_type: DDPM
num_train_timesteps: 100
beta_schedule: squaredcos_cap_v2
beta_start: 0.0001
beta_end: 0.02
prediction_type: sample
clip_sample: true
clip_sample_range: 1.0
num_inference_steps: null
do_mask_loss_for_padding: false
|