|
from pathlib import Path |
|
import PIL |
|
from tqdm import tqdm |
|
|
|
from accelerate import Accelerator |
|
from datasets import load_dataset |
|
from diffusers import DDPMPipeline, UNet2DModel, DDPMScheduler |
|
from diffusers.optimization import get_cosine_schedule_with_warmup |
|
from diffusers.utils import make_image_grid |
|
from huggingface_hub import create_repo, upload_folder |
|
from peft import LoraConfig, get_peft_model |
|
import torch |
|
import torch.nn.functional as F |
|
from torchvision import transforms |
|
|
|
from config import TrainingConfig |
|
|
|
|
|
""" |
|
Or diffusion for simple images (cifar10 or fashion-mnist or mnist) and explore subtly different |
|
x_T's and what the output is. |
|
|
|
Denoise each x_T multiple times to get a better picture of the distribution. |
|
Maybe use a set sequence of seeds for every denoising run (torch.Generator(seed=__)). |
|
|
|
Inter-concept space. Conciousness. |
|
""" |
|
|
|
|
|
def evaluate(config, epoch, pipeline): |
|
|
|
|
|
images = pipeline( |
|
batch_size=config.eval_batch_size, |
|
generator=torch.manual_seed(config.seed), |
|
num_inference_steps=50 |
|
).images |
|
|
|
|
|
image_grid = make_image_grid(images, rows=2, cols=2) |
|
|
|
|
|
test_dir = Path(config.output_dir) / 'samples' |
|
test_dir.mkdir(exist_ok=True) |
|
image_grid.save(test_dir / f'{epoch:04d}.png') |
|
|
|
|
|
def print_trainable_parameters(model): |
|
trainable_params = 0 |
|
all_param = 0 |
|
for _, param in model.named_parameters(): |
|
all_param += param.numel() |
|
if param.requires_grad: |
|
trainable_params += param.numel() |
|
print( |
|
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}" |
|
) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
config = TrainingConfig() |
|
config.dataset_name = 'keremberke/painting-style-classification' |
|
|
|
ds_dict = load_dataset(config.dataset_name, name='full') |
|
|
|
preprocess = transforms.Compose([ |
|
transforms.Resize((config.image_size, config.image_size)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) |
|
]) |
|
|
|
def transform(examples): |
|
return { |
|
'images': [preprocess(img.convert('RGB')) for img in examples['image']] |
|
} |
|
|
|
ds_dict.set_transform(transform) |
|
|
|
train_dataloader = torch.utils.data.DataLoader(ds_dict['train'], batch_size=config.train_batch_size, shuffle=True) |
|
valid_dataloader = torch.utils.data.DataLoader(ds_dict['validation'], batch_size=config.eval_batch_size, shuffle=False) |
|
test_dataloader = torch.utils.data.DataLoader(ds_dict['test'], batch_size=config.eval_batch_size, shuffle=False) |
|
|
|
unet = UNet2DModel.from_pretrained( |
|
'google/ddpm-celebahq-256', |
|
safetensors=True |
|
).to('mps') |
|
|
|
scheduler = DDPMScheduler.from_pretrained( |
|
'google/ddpm-celebahq-256' |
|
) |
|
|
|
"""unet=UNet2DModel.from_pretrained( |
|
'jmemon/ddpm-paintings-128-finetuned-celebahq' |
|
).to('mps') |
|
|
|
scheduler = DDPMScheduler.from_pretrained( |
|
'jmemon/ddpm-paintings-128-finetuned-celebahq' |
|
)""" |
|
|
|
lora_config = LoraConfig( |
|
r=8, |
|
lora_alpha=8, |
|
|
|
target_modules=['to_k','to_v'], |
|
lora_dropout=0.1, |
|
bias='none') |
|
lora_unet = get_peft_model(unet, lora_config) |
|
|
|
print_trainable_parameters(lora_unet) |
|
|
|
optimizer = torch.optim.AdamW(lora_unet.parameters(), lr=config.learning_rate) |
|
lr_scheduler = get_cosine_schedule_with_warmup( |
|
optimizer=optimizer, |
|
num_warmup_steps=config.lr_warmup_steps, |
|
num_training_steps=(len(train_dataloader) * config.num_epochs) |
|
) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=config.gradient_accumulation_steps, |
|
mixed_precision=config.mixed_precision, |
|
log_with='tensorboard', |
|
project_dir=Path(config.output_dir) / 'logs' |
|
) |
|
|
|
if accelerator.is_main_process: |
|
if config.push_to_hub: |
|
repo_id = create_repo(repo_id=config.hub_model_id, exist_ok=True).repo_id |
|
|
|
accelerator.init_trackers('ddpm-paintings-128-finetuned-cifar10') |
|
|
|
global_step = 0 |
|
|
|
for epoch in range(config.num_epochs): |
|
pbar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process) |
|
pbar.set_description(f'Epoch {epoch}') |
|
|
|
for idx, batch in enumerate(train_dataloader): |
|
clean_images = batch['images'].to('mps') |
|
|
|
noise = torch.randn(clean_images.shape, device=clean_images.device) |
|
bs = clean_images.shape[0] |
|
|
|
ts = torch.randint(0, scheduler.config.num_train_timesteps, (bs,), device=clean_images.device, dtype=torch.int64) |
|
|
|
noisy_images = scheduler.add_noise(clean_images, noise, ts) |
|
|
|
with accelerator.accumulate(unet): |
|
noise_pred = lora_unet(noisy_images, ts, return_dict=False)[0] |
|
loss = F.mse_loss(noise_pred, noise) |
|
accelerator.backward(loss) |
|
|
|
accelerator.clip_grad_norm_(lora_unet.parameters(), 1.0) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
logs = {'loss': loss.detach().item(), 'lr': lr_scheduler.get_last_lr()[0], 'step': global_step} |
|
pbar.update(1) |
|
pbar.set_postfix(loss=logs['loss'], step=idx + 1) |
|
accelerator.log(logs, step=global_step) |
|
global_step += 1 |
|
|
|
pbar.close() |
|
|
|
if accelerator.is_main_process: |
|
pipeline = DDPMPipeline(unet=accelerator.unwrap_model(lora_unet), scheduler=scheduler) |
|
|
|
if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1: |
|
|
|
evaluate(config, epoch, pipeline) |
|
|
|
if (epoch + 1) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1: |
|
if config.push_to_hub: |
|
torch.save(pipeline.unet.state_dict(), Path(config.output_dir) / 'model' / 'adapter_model.bin') |
|
|
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=Path(config.output_dir).parent, |
|
commit_message=f'Epoch {epoch}', |
|
ignore_patterns=['logs', '.DS_Store'], |
|
token='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' |
|
) |
|
|
|
else: |
|
pipeline.save_pretrained(config.output_dir) |
|
|