File size: 15,394 Bytes
92697e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
UNet2DModel( (conv_in): Conv2d(3, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_proj): Timesteps() (time_embedding): TimestepEmbedding( (linear_1): LoRACompatibleLinear(in_features=128, out_features=512, bias=True) (act): SiLU() (linear_2): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) ) (down_blocks): ModuleList( (0-1): 2 x DownBlock2D( (resnets): ModuleList( (0-1): 2 x ResnetBlock2D( (norm1): GroupNorm(32, 128, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=128, bias=True) (norm2): GroupNorm(32, 128, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() ) ) (downsamplers): ModuleList( (0): Downsample2D( (conv): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(2, 2)) ) ) ) (2): DownBlock2D( (resnets): ModuleList( (0): ResnetBlock2D( (norm1): GroupNorm(32, 128, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=256, bias=True) (norm2): GroupNorm(32, 256, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() (conv_shortcut): LoRACompatibleConv(128, 256, kernel_size=(1, 1), stride=(1, 1)) ) (1): ResnetBlock2D( (norm1): GroupNorm(32, 256, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=256, bias=True) (norm2): GroupNorm(32, 256, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() ) ) (downsamplers): ModuleList( (0): Downsample2D( (conv): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(2, 2)) ) ) ) (3): DownBlock2D( (resnets): ModuleList( (0-1): 2 x ResnetBlock2D( (norm1): GroupNorm(32, 256, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=256, bias=True) (norm2): GroupNorm(32, 256, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() ) ) (downsamplers): ModuleList( (0): Downsample2D( (conv): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(2, 2)) ) ) ) (4): AttnDownBlock2D( (attentions): ModuleList( (0-1): 2 x Attention( (group_norm): GroupNorm(32, 512, eps=1e-06, affine=True) (to_q): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (to_k): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (to_v): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (to_out): ModuleList( (0): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (1): Dropout(p=0.0, inplace=False) ) ) ) (resnets): ModuleList( (0): ResnetBlock2D( (norm1): GroupNorm(32, 256, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (norm2): GroupNorm(32, 512, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() (conv_shortcut): LoRACompatibleConv(256, 512, kernel_size=(1, 1), stride=(1, 1)) ) (1): ResnetBlock2D( (norm1): GroupNorm(32, 512, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (norm2): GroupNorm(32, 512, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() ) ) (downsamplers): ModuleList( (0): Downsample2D( (conv): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(2, 2)) ) ) ) (5): DownBlock2D( (resnets): ModuleList( (0-1): 2 x ResnetBlock2D( (norm1): GroupNorm(32, 512, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (norm2): GroupNorm(32, 512, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() ) ) ) ) (up_blocks): ModuleList( (0): UpBlock2D( (resnets): ModuleList( (0-2): 3 x ResnetBlock2D( (norm1): GroupNorm(32, 1024, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(1024, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (norm2): GroupNorm(32, 512, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() (conv_shortcut): LoRACompatibleConv(1024, 512, kernel_size=(1, 1), stride=(1, 1)) ) ) (upsamplers): ModuleList( (0): Upsample2D( (conv): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) ) ) (1): AttnUpBlock2D( (attentions): ModuleList( (0-2): 3 x Attention( (group_norm): GroupNorm(32, 512, eps=1e-06, affine=True) (to_q): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (to_k): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (to_v): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (to_out): ModuleList( (0): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (1): Dropout(p=0.0, inplace=False) ) ) ) (resnets): ModuleList( (0-1): 2 x ResnetBlock2D( (norm1): GroupNorm(32, 1024, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(1024, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (norm2): GroupNorm(32, 512, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() (conv_shortcut): LoRACompatibleConv(1024, 512, kernel_size=(1, 1), stride=(1, 1)) ) (2): ResnetBlock2D( (norm1): GroupNorm(32, 768, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(768, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (norm2): GroupNorm(32, 512, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() (conv_shortcut): LoRACompatibleConv(768, 512, kernel_size=(1, 1), stride=(1, 1)) ) ) (upsamplers): ModuleList( (0): Upsample2D( (conv): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) ) ) (2): UpBlock2D( (resnets): ModuleList( (0): ResnetBlock2D( (norm1): GroupNorm(32, 768, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(768, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=256, bias=True) (norm2): GroupNorm(32, 256, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() (conv_shortcut): LoRACompatibleConv(768, 256, kernel_size=(1, 1), stride=(1, 1)) ) (1-2): 2 x ResnetBlock2D( (norm1): GroupNorm(32, 512, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=256, bias=True) (norm2): GroupNorm(32, 256, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() (conv_shortcut): LoRACompatibleConv(512, 256, kernel_size=(1, 1), stride=(1, 1)) ) ) (upsamplers): ModuleList( (0): Upsample2D( (conv): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) ) ) (3): UpBlock2D( (resnets): ModuleList( (0-1): 2 x ResnetBlock2D( (norm1): GroupNorm(32, 512, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=256, bias=True) (norm2): GroupNorm(32, 256, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() (conv_shortcut): LoRACompatibleConv(512, 256, kernel_size=(1, 1), stride=(1, 1)) ) (2): ResnetBlock2D( (norm1): GroupNorm(32, 384, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=256, bias=True) (norm2): GroupNorm(32, 256, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() (conv_shortcut): LoRACompatibleConv(384, 256, kernel_size=(1, 1), stride=(1, 1)) ) ) (upsamplers): ModuleList( (0): Upsample2D( (conv): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) ) ) (4): UpBlock2D( (resnets): ModuleList( (0): ResnetBlock2D( (norm1): GroupNorm(32, 384, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(384, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=128, bias=True) (norm2): GroupNorm(32, 128, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() (conv_shortcut): LoRACompatibleConv(384, 128, kernel_size=(1, 1), stride=(1, 1)) ) (1-2): 2 x ResnetBlock2D( (norm1): GroupNorm(32, 256, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=128, bias=True) (norm2): GroupNorm(32, 128, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() (conv_shortcut): LoRACompatibleConv(256, 128, kernel_size=(1, 1), stride=(1, 1)) ) ) (upsamplers): ModuleList( (0): Upsample2D( (conv): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) ) ) (5): UpBlock2D( (resnets): ModuleList( (0-2): 3 x ResnetBlock2D( (norm1): GroupNorm(32, 256, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=128, bias=True) (norm2): GroupNorm(32, 128, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() (conv_shortcut): LoRACompatibleConv(256, 128, kernel_size=(1, 1), stride=(1, 1)) ) ) ) ) (mid_block): UNetMidBlock2D( (attentions): ModuleList( (0): Attention( (group_norm): GroupNorm(32, 512, eps=1e-06, affine=True) (to_q): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (to_k): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (to_v): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (to_out): ModuleList( (0): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (1): Dropout(p=0.0, inplace=False) ) ) ) (resnets): ModuleList( (0-1): 2 x ResnetBlock2D( (norm1): GroupNorm(32, 512, eps=1e-06, affine=True) (conv1): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=512, bias=True) (norm2): GroupNorm(32, 512, eps=1e-06, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() ) ) ) (conv_norm_out): GroupNorm(32, 128, eps=1e-06, affine=True) (conv_act): SiLU() (conv_out): Conv2d(128, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) |