update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: gpt2-medium
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: results
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# results
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.9560
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 5e-05
|
38 |
+
- train_batch_size: 8
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- num_epochs: 3
|
44 |
+
|
45 |
+
### Training results
|
46 |
+
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
49 |
+
| 0.8376 | 0.04 | 50 | 0.6634 |
|
50 |
+
| 0.564 | 0.07 | 100 | 0.5862 |
|
51 |
+
| 0.6271 | 0.11 | 150 | 0.5533 |
|
52 |
+
| 0.6125 | 0.14 | 200 | 0.5456 |
|
53 |
+
| 0.7069 | 0.18 | 250 | 0.5478 |
|
54 |
+
| 0.6945 | 0.21 | 300 | 0.5811 |
|
55 |
+
| 0.7125 | 0.25 | 350 | 0.6016 |
|
56 |
+
| 0.5495 | 0.29 | 400 | 0.5479 |
|
57 |
+
| 0.5943 | 0.32 | 450 | 0.6216 |
|
58 |
+
| 0.5727 | 0.36 | 500 | 0.5383 |
|
59 |
+
| 0.6411 | 0.39 | 550 | 0.5331 |
|
60 |
+
| 0.5362 | 0.43 | 600 | 0.5235 |
|
61 |
+
| 0.4939 | 0.46 | 650 | 0.5226 |
|
62 |
+
| 0.5034 | 0.5 | 700 | 0.5358 |
|
63 |
+
| 0.528 | 0.54 | 750 | 0.5729 |
|
64 |
+
| 0.6313 | 0.57 | 800 | 0.5339 |
|
65 |
+
| 0.4727 | 0.61 | 850 | 0.5055 |
|
66 |
+
| 0.472 | 0.64 | 900 | 0.5016 |
|
67 |
+
| 0.7186 | 0.68 | 950 | 0.5162 |
|
68 |
+
| 0.5895 | 0.71 | 1000 | 0.4998 |
|
69 |
+
| 0.5312 | 0.75 | 1050 | 0.4987 |
|
70 |
+
| 0.6059 | 0.79 | 1100 | 0.4991 |
|
71 |
+
| 0.536 | 0.82 | 1150 | 0.4849 |
|
72 |
+
| 0.4559 | 0.86 | 1200 | 0.4963 |
|
73 |
+
| 0.4382 | 0.89 | 1250 | 0.5148 |
|
74 |
+
| 0.5866 | 0.93 | 1300 | 0.5319 |
|
75 |
+
| 0.5382 | 0.96 | 1350 | 0.5145 |
|
76 |
+
| 0.5006 | 1.0 | 1400 | 0.5000 |
|
77 |
+
| 0.336 | 1.04 | 1450 | 0.4846 |
|
78 |
+
| 0.5228 | 1.07 | 1500 | 0.5092 |
|
79 |
+
| 0.549 | 1.11 | 1550 | 0.4925 |
|
80 |
+
| 0.4061 | 1.14 | 1600 | 0.5010 |
|
81 |
+
| 0.3972 | 1.18 | 1650 | 0.5194 |
|
82 |
+
| 0.4721 | 1.21 | 1700 | 0.4919 |
|
83 |
+
| 0.47 | 1.25 | 1750 | 0.5485 |
|
84 |
+
| 0.5275 | 1.29 | 1800 | 0.5080 |
|
85 |
+
| 0.4819 | 1.32 | 1850 | 0.5871 |
|
86 |
+
| 0.6606 | 1.36 | 1900 | 0.4946 |
|
87 |
+
| 0.5049 | 1.39 | 1950 | 0.5406 |
|
88 |
+
| 0.3779 | 1.43 | 2000 | 0.4913 |
|
89 |
+
| 0.5383 | 1.46 | 2050 | 0.4894 |
|
90 |
+
| 0.5097 | 1.5 | 2100 | 0.4905 |
|
91 |
+
| 0.5123 | 1.54 | 2150 | 0.4913 |
|
92 |
+
| 0.5565 | 1.57 | 2200 | 0.5117 |
|
93 |
+
| 0.4505 | 1.61 | 2250 | 0.5118 |
|
94 |
+
| 0.4465 | 1.64 | 2300 | 0.5078 |
|
95 |
+
| 0.5235 | 1.68 | 2350 | 0.5291 |
|
96 |
+
| 0.4292 | 1.71 | 2400 | 0.5221 |
|
97 |
+
| 0.3368 | 1.75 | 2450 | 0.5458 |
|
98 |
+
| 0.4065 | 1.79 | 2500 | 0.4915 |
|
99 |
+
| 0.4071 | 1.82 | 2550 | 0.5036 |
|
100 |
+
| 0.3895 | 1.86 | 2600 | 0.5139 |
|
101 |
+
| 0.4386 | 1.89 | 2650 | 0.5237 |
|
102 |
+
| 0.4839 | 1.93 | 2700 | 0.5086 |
|
103 |
+
| 0.3664 | 1.96 | 2750 | 0.4983 |
|
104 |
+
| 0.4612 | 2.0 | 2800 | 0.5170 |
|
105 |
+
| 0.453 | 2.04 | 2850 | 0.5584 |
|
106 |
+
| 0.1697 | 2.07 | 2900 | 0.6988 |
|
107 |
+
| 0.1763 | 2.11 | 2950 | 0.7424 |
|
108 |
+
| 0.2462 | 2.14 | 3000 | 0.8796 |
|
109 |
+
| 0.2649 | 2.18 | 3050 | 0.8260 |
|
110 |
+
| 0.3356 | 2.21 | 3100 | 0.7895 |
|
111 |
+
| 0.2405 | 2.25 | 3150 | 0.7047 |
|
112 |
+
| 0.0817 | 2.29 | 3200 | 0.8783 |
|
113 |
+
| 0.3479 | 2.32 | 3250 | 0.9104 |
|
114 |
+
| 0.2727 | 2.36 | 3300 | 0.9068 |
|
115 |
+
| 0.4241 | 2.39 | 3350 | 0.8165 |
|
116 |
+
| 0.2049 | 2.43 | 3400 | 0.7577 |
|
117 |
+
| 0.0979 | 2.46 | 3450 | 0.7535 |
|
118 |
+
| 0.3515 | 2.5 | 3500 | 0.9019 |
|
119 |
+
| 0.2383 | 2.54 | 3550 | 0.9160 |
|
120 |
+
| 0.1699 | 2.57 | 3600 | 1.0081 |
|
121 |
+
| 0.4976 | 2.61 | 3650 | 0.9987 |
|
122 |
+
| 0.5569 | 2.64 | 3700 | 0.9384 |
|
123 |
+
| 0.1119 | 2.68 | 3750 | 0.9036 |
|
124 |
+
| 0.3534 | 2.71 | 3800 | 0.9264 |
|
125 |
+
| 0.2139 | 2.75 | 3850 | 0.9323 |
|
126 |
+
| 0.2664 | 2.79 | 3900 | 0.9292 |
|
127 |
+
| 0.4916 | 2.82 | 3950 | 0.9459 |
|
128 |
+
| 0.2375 | 2.86 | 4000 | 0.9806 |
|
129 |
+
| 0.2114 | 2.89 | 4050 | 1.0095 |
|
130 |
+
| 0.2557 | 2.93 | 4100 | 0.9989 |
|
131 |
+
| 0.2056 | 2.96 | 4150 | 0.9937 |
|
132 |
+
| 0.2332 | 3.0 | 4200 | 0.9942 |
|
133 |
+
|
134 |
+
|
135 |
+
### Framework versions
|
136 |
+
|
137 |
+
- Transformers 4.31.0
|
138 |
+
- Pytorch 2.0.1+cu118
|
139 |
+
- Datasets 2.14.4
|
140 |
+
- Tokenizers 0.13.3
|