File size: 1,900 Bytes
cdc2217
 
 
 
 
 
 
 
 
 
 
 
 
412b8f9
 
 
 
 
cdc2217
 
 
 
 
 
 
412b8f9
cdc2217
 
 
 
 
 
 
 
 
 
412b8f9
cdc2217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412b8f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilBert_NER_finer
  results: []
datasets:
- nlpaueb/finer-139
language:
- en
pipeline_tag: token-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilBert_NER_finer

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the [Finer-139](https://huggingface.co/datasets/nlpaueb/finer-139) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0198
- Precision: 0.9445
- Recall: 0.9640
- F1: 0.9541
- Accuracy: 0.9954


## Training and evaluation data

The training data consists of the 4 most widely available ner_tags from the Finer-139 dataset. The training and the test data were curated from this source accordingly

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0034        | 1.0   | 1620 | 0.0261          | 0.9167    | 0.9668 | 0.9411 | 0.9941   |
| 0.0031        | 2.0   | 3240 | 0.0182          | 0.9471    | 0.9651 | 0.9561 | 0.9956   |
| 0.0012        | 3.0   | 4860 | 0.0198          | 0.9445    | 0.9640 | 0.9541 | 0.9954   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2