jinyuan22 commited on
Commit
65ba558
1 Parent(s): a7d7fe1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -3
README.md CHANGED
@@ -1,3 +1,43 @@
1
- ---
2
- license: bsd-3-clause
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ ---
4
+ # ProGen2-small
5
+
6
+ HF mirror for ProGen2-small for **Protein Engineering**
7
+
8
+ [Official GitHub](https://github.com/salesforce/progen/tree/main/progen2) of [ProGen2 by Nijkamp et al.](https://www.cell.com/cell-systems/fulltext/S2405-4712(23)00272-7).
9
+
10
+ - The ProGen2 suite of protein language models are scaled to 6.4B parameters
11
+ - Models with increased scale better capture the distribution of protein sequences
12
+ - ProGen2 models generate novel protein sequences adopting natural folds
13
+ - ProGen2 model likelihoods are effective for zero-shot fitness prediction
14
+
15
+ ```python
16
+ import torch
17
+ from faesm.progen2 import ProGenForCausalLM
18
+ from transformers import AutoTokenizer
19
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
20
+ model = ProGenForCausalLM.from_pretrained("jinyuan22/ProGen2-xlarge").to(torch.float16).to(device).eval()
21
+ tokenizer = AutoTokenizer.from_pretrained("jinyuan22/ProGen2-xlarge")
22
+
23
+ # sequence = "1" + "ACDEFGHIKLMNPQRSTVWY" * 50 + "2" # 1002 token
24
+
25
+ sequence = "2GFLPFRGADEGLAAREAATLAARGTAARAYREDSWAVPVPRGLLGDLTARVAALGAASPPPADPLAVTLDLHHVTAEVALTTVLDAATLVHGQTRVLSAEDAAEAATAAAAATEAYLERLQDFVLFMSASVRVWRRGNAAGATGPEWDQWYTVADRDALGSAPTHLAVLGRQADALCHFVLDRVAWGTCGTPLWSGDEDLGNVVATFAGYADRLATAPRDLIM1"
26
+
27
+ inputs = tokenizer(sequence, return_tensors="pt").to(device)
28
+
29
+ with torch.no_grad():
30
+ logits = model(inputs.input_ids, labels=inputs.input_ids).logits
31
+
32
+ logits = logits[0][:-1, ...]
33
+ target = inputs.input_ids[0, 1:]
34
+
35
+ # remove unused logits
36
+ first_token, last_token = 5, 29
37
+ logits = logits[:, first_token:(last_token+1)]
38
+ target = target - first_token
39
+
40
+ ce_eval = torch.nn.functional.cross_entropy(input=logits.view(-1, logits.size(-1)), target=target.view(-1), reduction="mean").item()
41
+ print(ce_eval)
42
+ assert abs(ce_eval - 1.0) < 0.1
43
+ ```