jinoooooooooo commited on
Commit
126f63e
·
verified ·
1 Parent(s): 51723f6

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,447 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:557850
10
+ - loss:DenoisingAutoEncoderLoss
11
+ base_model: google-bert/bert-base-cased
12
+ widget:
13
+ - source_sentence: A man his
14
+ sentences:
15
+ - A construction worker peeking out of a manhole while his coworker sits on the
16
+ sidewalk smiling.
17
+ - A man is jumping unto his filthy bed.
18
+ - A man is sitting in a chair and looking at something that he is holding.
19
+ - source_sentence: A and a woman walking with a a
20
+ sentences:
21
+ - A man and a woman is walking with a dog across a beach
22
+ - A baby smiles while swinging in a blue infant swing.
23
+ - A man uses a projector to give a presentation.
24
+ - source_sentence: blue
25
+ sentences:
26
+ - A baby wearing a bib makes a funny face at the camera.
27
+ - The man is wearing a blue shirt.
28
+ - There are three policemen on bikes making sure that the streets are cleared for
29
+ the president.
30
+ - source_sentence: Two boys and
31
+ sentences:
32
+ - Two boys sitting and eating ice cream.
33
+ - A man with a hat, boots, and brown pants, is playing the violin outside in front
34
+ of a black structure.
35
+ - A man is a safety suit walking outside while another man in a dark suit walks
36
+ into a building.
37
+ - source_sentence: A finds humorous that.
38
+ sentences:
39
+ - A older gentleman finds it humorous that he is getting his picture taken while
40
+ doing his laundry.
41
+ - A dark-skinned man smoking a cigarette near a green trashcan.
42
+ - A woman walks on a sidewalk wearing a white dress with a blue plaid pattern.
43
+ datasets:
44
+ - sentence-transformers/all-nli
45
+ pipeline_tag: sentence-similarity
46
+ library_name: sentence-transformers
47
+ ---
48
+
49
+ # SentenceTransformer based on google-bert/bert-base-cased
50
+
51
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
52
+
53
+ ## Model Details
54
+
55
+ ### Model Description
56
+ - **Model Type:** Sentence Transformer
57
+ - **Base model:** [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) <!-- at revision cd5ef92a9fb2f889e972770a36d4ed042daf221e -->
58
+ - **Maximum Sequence Length:** 512 tokens
59
+ - **Output Dimensionality:** 768 dimensions
60
+ - **Similarity Function:** Cosine Similarity
61
+ - **Training Dataset:**
62
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
63
+ - **Language:** en
64
+ <!-- - **License:** Unknown -->
65
+
66
+ ### Model Sources
67
+
68
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
69
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
70
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
71
+
72
+ ### Full Model Architecture
73
+
74
+ ```
75
+ SentenceTransformer(
76
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
77
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
78
+ )
79
+ ```
80
+
81
+ ## Usage
82
+
83
+ ### Direct Usage (Sentence Transformers)
84
+
85
+ First install the Sentence Transformers library:
86
+
87
+ ```bash
88
+ pip install -U sentence-transformers
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+ ```python
93
+ from sentence_transformers import SentenceTransformer
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SentenceTransformer("jinoooooooooo/bert-base-cased-nli-tsdae")
97
+ # Run inference
98
+ sentences = [
99
+ 'A finds humorous that.',
100
+ 'A older gentleman finds it humorous that he is getting his picture taken while doing his laundry.',
101
+ 'A woman walks on a sidewalk wearing a white dress with a blue plaid pattern.',
102
+ ]
103
+ embeddings = model.encode(sentences)
104
+ print(embeddings.shape)
105
+ # [3, 768]
106
+
107
+ # Get the similarity scores for the embeddings
108
+ similarities = model.similarity(embeddings, embeddings)
109
+ print(similarities.shape)
110
+ # [3, 3]
111
+ ```
112
+
113
+ <!--
114
+ ### Direct Usage (Transformers)
115
+
116
+ <details><summary>Click to see the direct usage in Transformers</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Downstream Usage (Sentence Transformers)
123
+
124
+ You can finetune this model on your own dataset.
125
+
126
+ <details><summary>Click to expand</summary>
127
+
128
+ </details>
129
+ -->
130
+
131
+ <!--
132
+ ### Out-of-Scope Use
133
+
134
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
135
+ -->
136
+
137
+ <!--
138
+ ## Bias, Risks and Limitations
139
+
140
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
141
+ -->
142
+
143
+ <!--
144
+ ### Recommendations
145
+
146
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
147
+ -->
148
+
149
+ ## Training Details
150
+
151
+ ### Training Dataset
152
+
153
+ #### all-nli
154
+
155
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
156
+ * Size: 557,850 training samples
157
+ * Columns: <code>damaged</code> and <code>original</code>
158
+ * Approximate statistics based on the first 1000 samples:
159
+ | | damaged | original |
160
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
161
+ | type | string | string |
162
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.45 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 10.49 tokens</li><li>max: 46 tokens</li></ul> |
163
+ * Samples:
164
+ | damaged | original |
165
+ |:-----------------------------|:---------------------------------------------------------------------------|
166
+ | <code>a horse jumps a</code> | <code>A person on a horse jumps over a broken down airplane.</code> |
167
+ | <code>at</code> | <code>Children smiling and waving at camera</code> |
168
+ | <code>boy jumping a.</code> | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> |
169
+ * Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
170
+
171
+ ### Evaluation Dataset
172
+
173
+ #### all-nli
174
+
175
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
176
+ * Size: 6,584 evaluation samples
177
+ * Columns: <code>damaged</code> and <code>original</code>
178
+ * Approximate statistics based on the first 1000 samples:
179
+ | | damaged | original |
180
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
181
+ | type | string | string |
182
+ | details | <ul><li>min: 3 tokens</li><li>mean: 8.52 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.26 tokens</li><li>max: 69 tokens</li></ul> |
183
+ * Samples:
184
+ | damaged | original |
185
+ |:---------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
186
+ | <code>Two while packages.</code> | <code>Two women are embracing while holding to go packages.</code> |
187
+ | <code>young children, with the number one with 2 are standing wooden in a bathroom in sink.</code> | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> |
188
+ | <code>A a during world city of</code> | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> |
189
+ * Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
190
+
191
+ ### Training Hyperparameters
192
+ #### Non-Default Hyperparameters
193
+
194
+ - `eval_strategy`: steps
195
+ - `per_device_train_batch_size`: 16
196
+ - `per_device_eval_batch_size`: 16
197
+ - `learning_rate`: 2e-05
198
+ - `num_train_epochs`: 1
199
+ - `warmup_ratio`: 0.1
200
+ - `fp16`: True
201
+
202
+ #### All Hyperparameters
203
+ <details><summary>Click to expand</summary>
204
+
205
+ - `overwrite_output_dir`: False
206
+ - `do_predict`: False
207
+ - `eval_strategy`: steps
208
+ - `prediction_loss_only`: True
209
+ - `per_device_train_batch_size`: 16
210
+ - `per_device_eval_batch_size`: 16
211
+ - `per_gpu_train_batch_size`: None
212
+ - `per_gpu_eval_batch_size`: None
213
+ - `gradient_accumulation_steps`: 1
214
+ - `eval_accumulation_steps`: None
215
+ - `torch_empty_cache_steps`: None
216
+ - `learning_rate`: 2e-05
217
+ - `weight_decay`: 0.0
218
+ - `adam_beta1`: 0.9
219
+ - `adam_beta2`: 0.999
220
+ - `adam_epsilon`: 1e-08
221
+ - `max_grad_norm`: 1.0
222
+ - `num_train_epochs`: 1
223
+ - `max_steps`: -1
224
+ - `lr_scheduler_type`: linear
225
+ - `lr_scheduler_kwargs`: {}
226
+ - `warmup_ratio`: 0.1
227
+ - `warmup_steps`: 0
228
+ - `log_level`: passive
229
+ - `log_level_replica`: warning
230
+ - `log_on_each_node`: True
231
+ - `logging_nan_inf_filter`: True
232
+ - `save_safetensors`: True
233
+ - `save_on_each_node`: False
234
+ - `save_only_model`: False
235
+ - `restore_callback_states_from_checkpoint`: False
236
+ - `no_cuda`: False
237
+ - `use_cpu`: False
238
+ - `use_mps_device`: False
239
+ - `seed`: 42
240
+ - `data_seed`: None
241
+ - `jit_mode_eval`: False
242
+ - `use_ipex`: False
243
+ - `bf16`: False
244
+ - `fp16`: True
245
+ - `fp16_opt_level`: O1
246
+ - `half_precision_backend`: auto
247
+ - `bf16_full_eval`: False
248
+ - `fp16_full_eval`: False
249
+ - `tf32`: None
250
+ - `local_rank`: 0
251
+ - `ddp_backend`: None
252
+ - `tpu_num_cores`: None
253
+ - `tpu_metrics_debug`: False
254
+ - `debug`: []
255
+ - `dataloader_drop_last`: False
256
+ - `dataloader_num_workers`: 0
257
+ - `dataloader_prefetch_factor`: None
258
+ - `past_index`: -1
259
+ - `disable_tqdm`: False
260
+ - `remove_unused_columns`: True
261
+ - `label_names`: None
262
+ - `load_best_model_at_end`: False
263
+ - `ignore_data_skip`: False
264
+ - `fsdp`: []
265
+ - `fsdp_min_num_params`: 0
266
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
267
+ - `fsdp_transformer_layer_cls_to_wrap`: None
268
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
269
+ - `deepspeed`: None
270
+ - `label_smoothing_factor`: 0.0
271
+ - `optim`: adamw_torch
272
+ - `optim_args`: None
273
+ - `adafactor`: False
274
+ - `group_by_length`: False
275
+ - `length_column_name`: length
276
+ - `ddp_find_unused_parameters`: None
277
+ - `ddp_bucket_cap_mb`: None
278
+ - `ddp_broadcast_buffers`: False
279
+ - `dataloader_pin_memory`: True
280
+ - `dataloader_persistent_workers`: False
281
+ - `skip_memory_metrics`: True
282
+ - `use_legacy_prediction_loop`: False
283
+ - `push_to_hub`: False
284
+ - `resume_from_checkpoint`: None
285
+ - `hub_model_id`: None
286
+ - `hub_strategy`: every_save
287
+ - `hub_private_repo`: None
288
+ - `hub_always_push`: False
289
+ - `gradient_checkpointing`: False
290
+ - `gradient_checkpointing_kwargs`: None
291
+ - `include_inputs_for_metrics`: False
292
+ - `include_for_metrics`: []
293
+ - `eval_do_concat_batches`: True
294
+ - `fp16_backend`: auto
295
+ - `push_to_hub_model_id`: None
296
+ - `push_to_hub_organization`: None
297
+ - `mp_parameters`:
298
+ - `auto_find_batch_size`: False
299
+ - `full_determinism`: False
300
+ - `torchdynamo`: None
301
+ - `ray_scope`: last
302
+ - `ddp_timeout`: 1800
303
+ - `torch_compile`: False
304
+ - `torch_compile_backend`: None
305
+ - `torch_compile_mode`: None
306
+ - `dispatch_batches`: None
307
+ - `split_batches`: None
308
+ - `include_tokens_per_second`: False
309
+ - `include_num_input_tokens_seen`: False
310
+ - `neftune_noise_alpha`: None
311
+ - `optim_target_modules`: None
312
+ - `batch_eval_metrics`: False
313
+ - `eval_on_start`: False
314
+ - `use_liger_kernel`: False
315
+ - `eval_use_gather_object`: False
316
+ - `average_tokens_across_devices`: False
317
+ - `prompts`: None
318
+ - `batch_sampler`: batch_sampler
319
+ - `multi_dataset_batch_sampler`: proportional
320
+
321
+ </details>
322
+
323
+ ### Training Logs
324
+ | Epoch | Step | Training Loss | Validation Loss |
325
+ |:-----:|:----:|:-------------:|:---------------:|
326
+ | 0.016 | 100 | 7.3226 | 7.2198 |
327
+ | 0.032 | 200 | 3.7141 | 6.3506 |
328
+ | 0.048 | 300 | 3.0632 | 5.8854 |
329
+ | 0.064 | 400 | 2.6549 | 5.7539 |
330
+ | 0.08 | 500 | 2.5332 | 5.5007 |
331
+ | 0.096 | 600 | 2.3137 | 5.5201 |
332
+ | 0.112 | 700 | 2.2533 | 5.3476 |
333
+ | 0.128 | 800 | 2.0654 | 5.3438 |
334
+ | 0.144 | 900 | 1.9943 | 5.3552 |
335
+ | 0.16 | 1000 | 1.9587 | 5.2709 |
336
+ | 0.176 | 1100 | 1.8053 | 5.4117 |
337
+ | 0.192 | 1200 | 1.7414 | 5.4315 |
338
+ | 0.208 | 1300 | 1.6773 | 5.2983 |
339
+ | 0.224 | 1400 | 1.6035 | 5.5064 |
340
+ | 0.24 | 1500 | 1.5592 | 5.5167 |
341
+ | 0.256 | 1600 | 1.5837 | 5.4428 |
342
+ | 0.272 | 1700 | 1.469 | 5.5266 |
343
+ | 0.288 | 1800 | 1.384 | 5.5159 |
344
+ | 0.304 | 1900 | 1.3616 | 5.4305 |
345
+ | 0.32 | 2000 | 1.3065 | 5.5076 |
346
+ | 0.336 | 2100 | 1.3045 | 5.5460 |
347
+ | 0.352 | 2200 | 1.3447 | 5.3051 |
348
+ | 0.368 | 2300 | 1.3367 | 5.4867 |
349
+ | 0.384 | 2400 | 1.148 | 5.6086 |
350
+ | 0.4 | 2500 | 1.2229 | 5.5027 |
351
+ | 0.416 | 2600 | 1.16 | 5.4446 |
352
+ | 0.432 | 2700 | 1.1809 | 5.4059 |
353
+ | 0.448 | 2800 | 1.2099 | 5.6255 |
354
+ | 0.464 | 2900 | 1.1264 | 5.2683 |
355
+ | 0.48 | 3000 | 1.1589 | 5.3651 |
356
+ | 0.496 | 3100 | 1.0954 | 5.3109 |
357
+ | 0.512 | 3200 | 1.0962 | 5.4071 |
358
+ | 0.528 | 3300 | 1.1185 | 5.4022 |
359
+ | 0.544 | 3400 | 1.0656 | 5.2648 |
360
+ | 0.56 | 3500 | 1.0935 | 5.2185 |
361
+ | 0.576 | 3600 | 1.0235 | 5.2950 |
362
+ | 0.592 | 3700 | 1.0256 | 5.3534 |
363
+ | 0.608 | 3800 | 0.9711 | 5.2015 |
364
+ | 0.624 | 3900 | 0.9901 | 5.1011 |
365
+ | 0.64 | 4000 | 0.9959 | 5.2055 |
366
+ | 0.656 | 4100 | 1.0018 | 5.2456 |
367
+ | 0.672 | 4200 | 0.9836 | 5.3166 |
368
+ | 0.688 | 4300 | 1.0481 | 5.2324 |
369
+ | 0.704 | 4400 | 0.9917 | 5.1831 |
370
+ | 0.72 | 4500 | 0.9595 | 5.1268 |
371
+ | 0.736 | 4600 | 1.0096 | 5.1112 |
372
+ | 0.752 | 4700 | 0.9986 | 5.0724 |
373
+ | 0.768 | 4800 | 0.9405 | 5.1163 |
374
+ | 0.784 | 4900 | 0.9057 | 5.0673 |
375
+ | 0.8 | 5000 | 0.9938 | 4.9926 |
376
+ | 0.816 | 5100 | 0.9849 | 4.9733 |
377
+ | 0.832 | 5200 | 0.8973 | 5.0531 |
378
+ | 0.848 | 5300 | 0.924 | 5.0007 |
379
+ | 0.864 | 5400 | 0.9516 | 5.0079 |
380
+ | 0.88 | 5500 | 0.9637 | 4.9513 |
381
+ | 0.896 | 5600 | 0.9232 | 5.0035 |
382
+ | 0.912 | 5700 | 0.9518 | 4.9339 |
383
+ | 0.928 | 5800 | 0.8939 | 4.9783 |
384
+ | 0.944 | 5900 | 0.8752 | 4.9495 |
385
+ | 0.96 | 6000 | 0.9187 | 4.9496 |
386
+ | 0.976 | 6100 | 0.8987 | 4.9177 |
387
+ | 0.992 | 6200 | 0.9034 | 4.9224 |
388
+
389
+
390
+ ### Framework Versions
391
+ - Python: 3.11.9
392
+ - Sentence Transformers: 3.4.0.dev0
393
+ - Transformers: 4.47.0
394
+ - PyTorch: 2.5.1+cu121
395
+ - Accelerate: 1.2.1
396
+ - Datasets: 3.1.0
397
+ - Tokenizers: 0.21.0
398
+
399
+ ## Citation
400
+
401
+ ### BibTeX
402
+
403
+ #### Sentence Transformers
404
+ ```bibtex
405
+ @inproceedings{reimers-2019-sentence-bert,
406
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
407
+ author = "Reimers, Nils and Gurevych, Iryna",
408
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
409
+ month = "11",
410
+ year = "2019",
411
+ publisher = "Association for Computational Linguistics",
412
+ url = "https://arxiv.org/abs/1908.10084",
413
+ }
414
+ ```
415
+
416
+ #### DenoisingAutoEncoderLoss
417
+ ```bibtex
418
+ @inproceedings{wang-2021-TSDAE,
419
+ title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
420
+ author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
421
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
422
+ month = nov,
423
+ year = "2021",
424
+ address = "Punta Cana, Dominican Republic",
425
+ publisher = "Association for Computational Linguistics",
426
+ pages = "671--688",
427
+ url = "https://arxiv.org/abs/2104.06979",
428
+ }
429
+ ```
430
+
431
+ <!--
432
+ ## Glossary
433
+
434
+ *Clearly define terms in order to be accessible across audiences.*
435
+ -->
436
+
437
+ <!--
438
+ ## Model Card Authors
439
+
440
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
441
+ -->
442
+
443
+ <!--
444
+ ## Model Card Contact
445
+
446
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
447
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-cased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 28996
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0.dev0",
4
+ "transformers": "4.47.0",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1f5effdbe814a1407bea11e19fbd6deb4b92cd6fb4645fdf06e12f12245a4fb
3
+ size 433263448
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff