jinhong426 commited on
Commit
ee32f46
·
1 Parent(s): 292d7ec

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -18
README.md CHANGED
@@ -35,32 +35,27 @@ fine-tuned versions on a task that interests you.
35
  Here is how to use this model:
36
 
37
  ```python
38
- import requests
39
  import torch
40
  from PIL import Image
41
- from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
42
-
43
 
44
- # load Mask2Former fine-tuned on COCO panoptic segmentation
45
- processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-large-coco-panoptic")
46
- model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-large-coco-panoptic")
47
 
48
- url = "http://images.cocodataset.org/val2017/000000039769.jpg"
49
- image = Image.open(requests.get(url, stream=True).raw)
50
- inputs = processor(images=image, return_tensors="pt")
51
 
 
52
  with torch.no_grad():
53
  outputs = model(**inputs)
54
 
55
- # model predicts class_queries_logits of shape `(batch_size, num_queries)`
56
- # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
57
- class_queries_logits = outputs.class_queries_logits
58
- masks_queries_logits = outputs.masks_queries_logits
59
-
60
- # you can pass them to processor for postprocessing
61
- result = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
62
- # we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
63
- predicted_panoptic_map = result["segmentation"]
64
  ```
65
 
66
  For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former).
 
35
  Here is how to use this model:
36
 
37
  ```python
 
38
  import torch
39
  from PIL import Image
40
+ import requests
41
+ from transformers import SamModel, SamProcessor
42
 
43
+ device = "cuda" if torch.cuda.is_available() else "cpu"
44
+ model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
45
+ processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
46
 
47
+ img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
48
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
49
+ input_points = [[[450, 600]]] # 2D location of a window in the image
50
 
51
+ inputs = processor(raw_image, input_points=input_points, return_tensors="pt").to(device)
52
  with torch.no_grad():
53
  outputs = model(**inputs)
54
 
55
+ masks = processor.image_processor.post_process_masks(
56
+ outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()
57
+ )
58
+ scores = outputs.iou_scores
 
 
 
 
 
59
  ```
60
 
61
  For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former).