jinghua2tang commited on
Commit
bf163ce
·
1 Parent(s): ade4b24

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 526.37 +/- 176.84
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:622845f0f390b70685d45c76c1fdbdb0b8aed57ea7163189f77a1f160bd1371c
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fccf77960d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fccf7796160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fccf77961f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fccf7796280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fccf7796310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fccf77963a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fccf7796430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fccf77964c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fccf7796550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fccf77965e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fccf7796670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fccf7796700>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fccf778dba0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1673975121118311901,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAI5vEb6zkt8+4WkuwMIri7/Flw9AwLJLP1O/oT/U1Za9rlKnv5j9+78mRxi/eaaAvH0mGT+c9p4+RSwTv4PQZr+3O22/aMDNvOz7aj8utek8Rj4XP1tJhr8Mzga/lWwnv3BQkb84dQo/4CjrPmFrIz+uW6y/93uRP51ndb6p002/48nav3C07D/sf4S/eSxfPtPyA8DgBjY/FOQavztNJDzTfJU/Tcanvo9WSz+xsSU7f4l1v2m5oL/3/lk97cGGv0fmij8qx1VAVXR+v3qHq7xgf2E/OHUKP+Ao6z7Cg8i/kb2fv3eDEz92hMw+xG2Zv+App7+uI9w/dWOPv8p0Uj5Svv2/aUyeP10ZGr+EXOq7byqRPxpLFz5W6Uk/lReyPKut77/qMDi+k5V7PmhFQb8mF+8+GlM+QMcJgL8AqCw9YH9hPzh1Cj/gKOs+woPIv6rQML/Og0U/z9hzPhD2N7/NepE/PZcYP27Ycj/BKma+3rpov8SGsr/MJhi/Xn+cvKLRVr+MOzi86YjCvv3kHb+EMgXABTIauUu0aj8bIPk8J003P5rSQr/ikv++GhlzvnBQkb84dQo/4CjrPmFrIz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABeUvW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALkgVvAAAAACjbuC/AAAAAPcx/L0AAAAAStHfPwAAAAAZ3gI+AAAAAGvG5T8AAAAAFte4PQAAAADlr/a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUUCntgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBIIcr0AAAAA2HP6vwAAAAAJ+829AAAAACgf7j8AAAAACdglvQAAAACezvM/AAAAAFX8BT4AAAAA/SzkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9WrjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICL/pa9AAAAAA7b478AAAAAHnu4PQAAAABbDwBAAAAAAD8xyr0AAAAANWblPwAAAAA2ljA8AAAAAKHj/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPgo+2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAvwJPQAAAAA58Nm/AAAAALOisjwAAAAAr2rcPwAAAADs/Y29AAAAAJUN5z8AAAAAW6vMPQAAAAA8Sv6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIEONj5KvmqMAWyUTegDjAF0lEdAqIFepIczZnV9lChoBkdAjWfri2lVLmgHTegDaAhHQKiGhhDw6Qx1fZQoaAZHQIWnq48U21loB03oA2gIR0Coh9OMMqjKdX2UKGgGR0CEXI+RoysTaAdN6ANoCEdAqIhO4smOVHV9lChoBkdAinji+De0omgHTegDaAhHQKiOLfyf+S91fZQoaAZHQG6QrxRVIZtoB03oA2gIR0CokydnbqQjdX2UKGgGR0CNcxXDFZPmaAdN6ANoCEdAqJRjeVLSNXV9lChoBkdAiQ4pMxoIwGgHTegDaAhHQKiU1xZMcp91fZQoaAZHQIluYZQ53khoB03oA2gIR0ComrsCDEm6dX2UKGgGR0CEYxjjJdSmaAdN6ANoCEdAqJ/NARkEtHV9lChoBkdAgTlBfrrxAmgHTegDaAhHQKihEkX1rZd1fZQoaAZHQIGEbaCcwxpoB03oA2gIR0CooYnX/YJ3dX2UKGgGR0CF9LjmSyMUaAdN6ANoCEdAqKdiW7e2u3V9lChoBkdAhzRtZvDP4WgHTegDaAhHQKisoob4rSV1fZQoaAZHQITUSURnOB1oB03oA2gIR0Cored0ihWYdX2UKGgGR0CFB1PO6d1/aAdN6ANoCEdAqK5bwhGH6HV9lChoBkdAfGRkzGgi/2gHTegDaAhHQKi0ZM/QjUx1fZQoaAZHQGdPurp7kXFoB03oA2gIR0CouYNEPUaydX2UKGgGR0B87CxhUipvaAdN6ANoCEdAqLq/rY5DJHV9lChoBkdAZxGAtFrmAGgHTegDaAhHQKi7Lwz+FUR1fZQoaAZHQHXRlpblijNoB03oA2gIR0CowRO6d1+zdX2UKGgGR0BXTdE9dNWVaAdN6ANoCEdAqMZU0iyIHnV9lChoBkdAdCuT4L1EmmgHTegDaAhHQKjHlVEuxr11fZQoaAZHQHv0pvxYq5NoB03oA2gIR0CoyAv9cbBHdX2UKGgGR0CAWdOgQHzIaAdN6ANoCEdAqM3xy8zyjHV9lChoBkdAgIeMlb/wRWgHTegDaAhHQKjTHSR8twt1fZQoaAZHQHEF0pmVZ9xoB03oA2gIR0Co1F/QrtmddX2UKGgGR0B0JYLH+6y0aAdN6ANoCEdAqNTaZ0CA+nV9lChoBkdAgMeBL5AQhGgHTegDaAhHQKja3xDst051fZQoaAZHQIwcKWkadc1oB03oA2gIR0Co4A/r0J4TdX2UKGgGR0CH8tiiqQzUaAdN6ANoCEdAqOFPp+tr9HV9lChoBkdAiaC9oN/e+GgHTegDaAhHQKjhxoePq9p1fZQoaAZHQITUntY0VJtoB03oA2gIR0Co578VQAMldX2UKGgGR0CBfGUM5OrRaAdN6ANoCEdAqO0esA/9pHV9lChoBkdAg65fLs8gZGgHTegDaAhHQKjuYqVhTfl1fZQoaAZHQIhGbjvNNahoB03oA2gIR0Co7t0btJFtdX2UKGgGR0CJx70kGA09aAdN6ANoCEdAqPTpSJj2BnV9lChoBkdAhoRCpeeFtmgHTegDaAhHQKj6Z5Y5ksl1fZQoaAZHQHwQi0jTrmhoB03oA2gIR0Co+64mLLpzdX2UKGgGR0B94+afBeolaAdN6ANoCEdAqPwhIBikPHV9lChoBkdAhDiBjvuw5mgHTegDaAhHQKkCSLfk3jx1fZQoaAZHQIP/3G+9Jz1oB03oA2gIR0CpB4cB+4LDdX2UKGgGR0B4p9Y3eenRaAdN6ANoCEdAqQjC7VawEHV9lChoBkdAhJgpCSidrmgHTegDaAhHQKkJQaWom5V1fZQoaAZHQIb//znRsuZoB03oA2gIR0CpDyui35N5dX2UKGgGR0B+SeQSzw+daAdN6ANoCEdAqRRp/oaDPHV9lChoBkdAg3zHkT6BRWgHTegDaAhHQKkVqFqSHM51fZQoaAZHQH9ebFXJYDFoB03oA2gIR0CpFhwmVqvedX2UKGgGR0CBL8/Ho5ggaAdN6ANoCEdAqRv2GsV+JHV9lChoBkdAJQTgEU0vXmgHTegDaAhHQKkhF9jwx351fZQoaAZHQICVqkbgjyFoB03oA2gIR0CpIljJ+2E1dX2UKGgGR0B8FOd4FA3UaAdN6ANoCEdAqSLRKnNxEXV9lChoBkdAW4BHvttygmgHTegDaAhHQKkrDRRdhRZ1fZQoaAZHQIOE9c0Ltu1oB03oA2gIR0CpMcZflZHNdX2UKGgGR0ByR4FmnO0LaAdN6ANoCEdAqTMLVUdaMnV9lChoBkdAZIuJ3PiT+2gHTegDaAhHQKkzgEpy6tl1fZQoaAZHQIQhjAtWdVhoB03oA2gIR0CpOXhkRSP2dX2UKGgGR0CFODVLi++NaAdN6ANoCEdAqT7QCMglnnV9lChoBkdAg2Or3bmEG2gHTegDaAhHQKlAF1gYxcp1fZQoaAZHQINPGUQkHD9oB03oA2gIR0CpQJVVYISldX2UKGgGR0CNhuweNkvsaAdN6ANoCEdAqUZ1SEUTMHV9lChoBkdAhKEmoBJZn2gHTegDaAhHQKlLuX531SR1fZQoaAZHQIPnAfdRBNVoB03oA2gIR0CpTQRhc7hfdX2UKGgGR0CEpnOafBepaAdN6ANoCEdAqU17gAIY33V9lChoBkdAhb9v4M4LkWgHTegDaAhHQKlTc4ZMtbt1fZQoaAZHQIaPfwkPcztoB03oA2gIR0CpWLo+fRNRdX2UKGgGR0CH1hfqHGjsaAdN6ANoCEdAqVn4VO9FnnV9lChoBkdAh8q8x0uDjGgHTegDaAhHQKlabSR8twt1fZQoaAZHQHvMgy2x6fJoB03oA2gIR0CpYH7655JLdX2UKGgGR0CBErehPCVKaAdN6ANoCEdAqWWoK2KEWnV9lChoBkdAfTfBAv+OwWgHTegDaAhHQKlm70Bfa6B1fZQoaAZHQHdAWrXDm8xoB03oA2gIR0CpZ29nkDISdX2UKGgGR0CG8KeQuEmIaAdN6ANoCEdAqW1v420iQnV9lChoBkdAf0uIyCWeH2gHTegDaAhHQKlyriHZbpx1fZQoaAZHQILBu/WUbDNoB03oA2gIR0Cpc/z/6wdKdX2UKGgGR0CHYFAGB4D+aAdN6ANoCEdAqXR4ieNDMXV9lChoBkdAg2p3f642CWgHTegDaAhHQKl6e3trsSl1fZQoaAZHQImWV/tpmEpoB03oA2gIR0Cpf/PsiSq3dX2UKGgGR0CEgsGgzxgBaAdN6ANoCEdAqYEzjtG/e3V9lChoBkdAg16FaSs8xWgHTegDaAhHQKmBrxvNu+B1fZQoaAZHQIW8UWoFV1hoB03oA2gIR0Cph77+T/yYdX2UKGgGR0CCuLANXo1UaAdN6ANoCEdAqYzhVfeDWnV9lChoBkdAhxrKDK5kLGgHTegDaAhHQKmOGViWmgt1fZQoaAZHQHyvlNtZV4poB03oA2gIR0Cpjo+F+NLldX2UKGgGR0CHMHZW7voeaAdN6ANoCEdAqZSLTBqKxnV9lChoBkdAhq8BdUsFuGgHTegDaAhHQKmZoi/O+qR1fZQoaAZHQI32inNxEORoB03oA2gIR0CpmuX7cfvGdX2UKGgGR0CJ47nzxwyZaAdN6ANoCEdAqZtW98JD3XV9lChoBkdAheJJeE7GN2gHTegDaAhHQKmhP9m6Gxl1fZQoaAZHQIMeUwL3K0VoB03oA2gIR0CppmEXcgyNdX2UKGgGR0CKNrzd1uBMaAdN6ANoCEdAqaeh8jRlYnV9lChoBkdAiiwz9KmKqGgHTegDaAhHQKmoGaqCHyp1fZQoaAZHQIrzfq5byH5oB03oA2gIR0CprgV01ZTydX2UKGgGR0CD3xgNPP9laAdN6ANoCEdAqbMXoV2zOXV9lChoBkdAg4Fw+UyHmGgHTegDaAhHQKm0TTLGJep1fZQoaAZHQIWiN0eU6gdoB03oA2gIR0CptMP1tfoidX2UKGgGR0CLkATaCcwyaAdN6ANoCEdAqbrtHpbD/HV9lChoBkdAiuYFE7W/amgHTegDaAhHQKnAFSRbKRx1fZQoaAZHQIrk/K4hEBtoB03oA2gIR0CpwVR0EHMVdX2UKGgGR0CHJpLnLaEjaAdN6ANoCEdAqcHHjKgZj3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc917c1eb715ac21af7d4b16d50952c149e6a63f5ddfbd987304b5a7fa5364fe
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4e1c1aa1c21d5c06a65800b987f0938e7d4f71b473e25d0892f46ea2ef676bb
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fccf77960d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fccf7796160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fccf77961f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fccf7796280>", "_build": "<function ActorCriticPolicy._build at 0x7fccf7796310>", "forward": "<function ActorCriticPolicy.forward at 0x7fccf77963a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fccf7796430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fccf77964c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fccf7796550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fccf77965e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fccf7796670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fccf7796700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fccf778dba0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673975121118311901, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAI5vEb6zkt8+4WkuwMIri7/Flw9AwLJLP1O/oT/U1Za9rlKnv5j9+78mRxi/eaaAvH0mGT+c9p4+RSwTv4PQZr+3O22/aMDNvOz7aj8utek8Rj4XP1tJhr8Mzga/lWwnv3BQkb84dQo/4CjrPmFrIz+uW6y/93uRP51ndb6p002/48nav3C07D/sf4S/eSxfPtPyA8DgBjY/FOQavztNJDzTfJU/Tcanvo9WSz+xsSU7f4l1v2m5oL/3/lk97cGGv0fmij8qx1VAVXR+v3qHq7xgf2E/OHUKP+Ao6z7Cg8i/kb2fv3eDEz92hMw+xG2Zv+App7+uI9w/dWOPv8p0Uj5Svv2/aUyeP10ZGr+EXOq7byqRPxpLFz5W6Uk/lReyPKut77/qMDi+k5V7PmhFQb8mF+8+GlM+QMcJgL8AqCw9YH9hPzh1Cj/gKOs+woPIv6rQML/Og0U/z9hzPhD2N7/NepE/PZcYP27Ycj/BKma+3rpov8SGsr/MJhi/Xn+cvKLRVr+MOzi86YjCvv3kHb+EMgXABTIauUu0aj8bIPk8J003P5rSQr/ikv++GhlzvnBQkb84dQo/4CjrPmFrIz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABeUvW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALkgVvAAAAACjbuC/AAAAAPcx/L0AAAAAStHfPwAAAAAZ3gI+AAAAAGvG5T8AAAAAFte4PQAAAADlr/a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUUCntgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBIIcr0AAAAA2HP6vwAAAAAJ+829AAAAACgf7j8AAAAACdglvQAAAACezvM/AAAAAFX8BT4AAAAA/SzkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9WrjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICL/pa9AAAAAA7b478AAAAAHnu4PQAAAABbDwBAAAAAAD8xyr0AAAAANWblPwAAAAA2ljA8AAAAAKHj/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPgo+2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAvwJPQAAAAA58Nm/AAAAALOisjwAAAAAr2rcPwAAAADs/Y29AAAAAJUN5z8AAAAAW6vMPQAAAAA8Sv6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIEONj5KvmqMAWyUTegDjAF0lEdAqIFepIczZnV9lChoBkdAjWfri2lVLmgHTegDaAhHQKiGhhDw6Qx1fZQoaAZHQIWnq48U21loB03oA2gIR0Coh9OMMqjKdX2UKGgGR0CEXI+RoysTaAdN6ANoCEdAqIhO4smOVHV9lChoBkdAinji+De0omgHTegDaAhHQKiOLfyf+S91fZQoaAZHQG6QrxRVIZtoB03oA2gIR0CokydnbqQjdX2UKGgGR0CNcxXDFZPmaAdN6ANoCEdAqJRjeVLSNXV9lChoBkdAiQ4pMxoIwGgHTegDaAhHQKiU1xZMcp91fZQoaAZHQIluYZQ53khoB03oA2gIR0ComrsCDEm6dX2UKGgGR0CEYxjjJdSmaAdN6ANoCEdAqJ/NARkEtHV9lChoBkdAgTlBfrrxAmgHTegDaAhHQKihEkX1rZd1fZQoaAZHQIGEbaCcwxpoB03oA2gIR0CooYnX/YJ3dX2UKGgGR0CF9LjmSyMUaAdN6ANoCEdAqKdiW7e2u3V9lChoBkdAhzRtZvDP4WgHTegDaAhHQKisoob4rSV1fZQoaAZHQITUSURnOB1oB03oA2gIR0Cored0ihWYdX2UKGgGR0CFB1PO6d1/aAdN6ANoCEdAqK5bwhGH6HV9lChoBkdAfGRkzGgi/2gHTegDaAhHQKi0ZM/QjUx1fZQoaAZHQGdPurp7kXFoB03oA2gIR0CouYNEPUaydX2UKGgGR0B87CxhUipvaAdN6ANoCEdAqLq/rY5DJHV9lChoBkdAZxGAtFrmAGgHTegDaAhHQKi7Lwz+FUR1fZQoaAZHQHXRlpblijNoB03oA2gIR0CowRO6d1+zdX2UKGgGR0BXTdE9dNWVaAdN6ANoCEdAqMZU0iyIHnV9lChoBkdAdCuT4L1EmmgHTegDaAhHQKjHlVEuxr11fZQoaAZHQHv0pvxYq5NoB03oA2gIR0CoyAv9cbBHdX2UKGgGR0CAWdOgQHzIaAdN6ANoCEdAqM3xy8zyjHV9lChoBkdAgIeMlb/wRWgHTegDaAhHQKjTHSR8twt1fZQoaAZHQHEF0pmVZ9xoB03oA2gIR0Co1F/QrtmddX2UKGgGR0B0JYLH+6y0aAdN6ANoCEdAqNTaZ0CA+nV9lChoBkdAgMeBL5AQhGgHTegDaAhHQKja3xDst051fZQoaAZHQIwcKWkadc1oB03oA2gIR0Co4A/r0J4TdX2UKGgGR0CH8tiiqQzUaAdN6ANoCEdAqOFPp+tr9HV9lChoBkdAiaC9oN/e+GgHTegDaAhHQKjhxoePq9p1fZQoaAZHQITUntY0VJtoB03oA2gIR0Co578VQAMldX2UKGgGR0CBfGUM5OrRaAdN6ANoCEdAqO0esA/9pHV9lChoBkdAg65fLs8gZGgHTegDaAhHQKjuYqVhTfl1fZQoaAZHQIhGbjvNNahoB03oA2gIR0Co7t0btJFtdX2UKGgGR0CJx70kGA09aAdN6ANoCEdAqPTpSJj2BnV9lChoBkdAhoRCpeeFtmgHTegDaAhHQKj6Z5Y5ksl1fZQoaAZHQHwQi0jTrmhoB03oA2gIR0Co+64mLLpzdX2UKGgGR0B94+afBeolaAdN6ANoCEdAqPwhIBikPHV9lChoBkdAhDiBjvuw5mgHTegDaAhHQKkCSLfk3jx1fZQoaAZHQIP/3G+9Jz1oB03oA2gIR0CpB4cB+4LDdX2UKGgGR0B4p9Y3eenRaAdN6ANoCEdAqQjC7VawEHV9lChoBkdAhJgpCSidrmgHTegDaAhHQKkJQaWom5V1fZQoaAZHQIb//znRsuZoB03oA2gIR0CpDyui35N5dX2UKGgGR0B+SeQSzw+daAdN6ANoCEdAqRRp/oaDPHV9lChoBkdAg3zHkT6BRWgHTegDaAhHQKkVqFqSHM51fZQoaAZHQH9ebFXJYDFoB03oA2gIR0CpFhwmVqvedX2UKGgGR0CBL8/Ho5ggaAdN6ANoCEdAqRv2GsV+JHV9lChoBkdAJQTgEU0vXmgHTegDaAhHQKkhF9jwx351fZQoaAZHQICVqkbgjyFoB03oA2gIR0CpIljJ+2E1dX2UKGgGR0B8FOd4FA3UaAdN6ANoCEdAqSLRKnNxEXV9lChoBkdAW4BHvttygmgHTegDaAhHQKkrDRRdhRZ1fZQoaAZHQIOE9c0Ltu1oB03oA2gIR0CpMcZflZHNdX2UKGgGR0ByR4FmnO0LaAdN6ANoCEdAqTMLVUdaMnV9lChoBkdAZIuJ3PiT+2gHTegDaAhHQKkzgEpy6tl1fZQoaAZHQIQhjAtWdVhoB03oA2gIR0CpOXhkRSP2dX2UKGgGR0CFODVLi++NaAdN6ANoCEdAqT7QCMglnnV9lChoBkdAg2Or3bmEG2gHTegDaAhHQKlAF1gYxcp1fZQoaAZHQINPGUQkHD9oB03oA2gIR0CpQJVVYISldX2UKGgGR0CNhuweNkvsaAdN6ANoCEdAqUZ1SEUTMHV9lChoBkdAhKEmoBJZn2gHTegDaAhHQKlLuX531SR1fZQoaAZHQIPnAfdRBNVoB03oA2gIR0CpTQRhc7hfdX2UKGgGR0CEpnOafBepaAdN6ANoCEdAqU17gAIY33V9lChoBkdAhb9v4M4LkWgHTegDaAhHQKlTc4ZMtbt1fZQoaAZHQIaPfwkPcztoB03oA2gIR0CpWLo+fRNRdX2UKGgGR0CH1hfqHGjsaAdN6ANoCEdAqVn4VO9FnnV9lChoBkdAh8q8x0uDjGgHTegDaAhHQKlabSR8twt1fZQoaAZHQHvMgy2x6fJoB03oA2gIR0CpYH7655JLdX2UKGgGR0CBErehPCVKaAdN6ANoCEdAqWWoK2KEWnV9lChoBkdAfTfBAv+OwWgHTegDaAhHQKlm70Bfa6B1fZQoaAZHQHdAWrXDm8xoB03oA2gIR0CpZ29nkDISdX2UKGgGR0CG8KeQuEmIaAdN6ANoCEdAqW1v420iQnV9lChoBkdAf0uIyCWeH2gHTegDaAhHQKlyriHZbpx1fZQoaAZHQILBu/WUbDNoB03oA2gIR0Cpc/z/6wdKdX2UKGgGR0CHYFAGB4D+aAdN6ANoCEdAqXR4ieNDMXV9lChoBkdAg2p3f642CWgHTegDaAhHQKl6e3trsSl1fZQoaAZHQImWV/tpmEpoB03oA2gIR0Cpf/PsiSq3dX2UKGgGR0CEgsGgzxgBaAdN6ANoCEdAqYEzjtG/e3V9lChoBkdAg16FaSs8xWgHTegDaAhHQKmBrxvNu+B1fZQoaAZHQIW8UWoFV1hoB03oA2gIR0Cph77+T/yYdX2UKGgGR0CCuLANXo1UaAdN6ANoCEdAqYzhVfeDWnV9lChoBkdAhxrKDK5kLGgHTegDaAhHQKmOGViWmgt1fZQoaAZHQHyvlNtZV4poB03oA2gIR0Cpjo+F+NLldX2UKGgGR0CHMHZW7voeaAdN6ANoCEdAqZSLTBqKxnV9lChoBkdAhq8BdUsFuGgHTegDaAhHQKmZoi/O+qR1fZQoaAZHQI32inNxEORoB03oA2gIR0CpmuX7cfvGdX2UKGgGR0CJ47nzxwyZaAdN6ANoCEdAqZtW98JD3XV9lChoBkdAheJJeE7GN2gHTegDaAhHQKmhP9m6Gxl1fZQoaAZHQIMeUwL3K0VoB03oA2gIR0CppmEXcgyNdX2UKGgGR0CKNrzd1uBMaAdN6ANoCEdAqaeh8jRlYnV9lChoBkdAiiwz9KmKqGgHTegDaAhHQKmoGaqCHyp1fZQoaAZHQIrzfq5byH5oB03oA2gIR0CprgV01ZTydX2UKGgGR0CD3xgNPP9laAdN6ANoCEdAqbMXoV2zOXV9lChoBkdAg4Fw+UyHmGgHTegDaAhHQKm0TTLGJep1fZQoaAZHQIWiN0eU6gdoB03oA2gIR0CptMP1tfoidX2UKGgGR0CLkATaCcwyaAdN6ANoCEdAqbrtHpbD/HV9lChoBkdAiuYFE7W/amgHTegDaAhHQKnAFSRbKRx1fZQoaAZHQIrk/K4hEBtoB03oA2gIR0CpwVR0EHMVdX2UKGgGR0CHJpLnLaEjaAdN6ANoCEdAqcHHjKgZj3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (800 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 526.370412666515, "std_reward": 176.84204349745843, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T18:02:24.985490"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b900ab92364bac927551181b6a72a6a7da728e9cc5fe30f564f6b479ec24c66
3
+ size 2521