File size: 17,774 Bytes
2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 509511d 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/block.py
# Commit id: abbc1311731867310635f9edc2a9ec18317c8c48
# Copyright (c) 2024, Tri Dao.
from functools import partial
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from .stochastic_depth import StochasticDepth
from .mha import MHA
from .mlp import Mlp
try:
from flash_attn.ops.triton.layer_norm import layer_norm_fn, RMSNorm
except ImportError:
layer_norm_fn, RMSNorm = None, None
class Block(nn.Module):
def __init__(
self,
dim,
mixer_cls=None,
mlp_cls=None,
norm_cls=nn.LayerNorm,
dropout_cls=nn.Dropout,
prenorm=True,
resid_dropout1=0.0,
resid_dropout2=0.0,
drop_path1=0.0,
drop_path2=0.0,
fused_dropout_add_ln=False,
return_residual=False,
residual_in_fp32=False,
sequence_parallel=False,
mark_shared_params=False,
):
"""
For prenorm=True, this Block has a slightly different structure compared to a regular
prenorm Transformer block.
The standard block is: LN -> MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add.
[Ref: https://arxiv.org/abs/2002.04745]
Here we have: Dropout -> Add -> LN -> MHA -> Dropout -> Add -> LN -> MLP, returning both
the hidden_states (output of the MLP) and the residual.
This is for performance reasons, as we can fuse the dropout, add and LayerNorm.
The residual needs to be provided (except for the very first block).
For prenorm=False, this Block has the same structure as a regular postnorm Transformer
block: MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add -> LN.
return_residual: whether each of the sub-layers (mixer and mlp) will return the residual.
This is for performance reason: for post-norm architecture, returning the input allows us
to fuse the backward of nn.Linear with the residual connection.
"""
super().__init__()
self.prenorm = prenorm
self.fused_dropout_add_ln = fused_dropout_add_ln
self.return_residual = return_residual
self.residual_in_fp32 = residual_in_fp32
if self.residual_in_fp32:
assert self.prenorm, "residual_in_fp32 is only compatible with prenorm=True"
if mixer_cls is None:
mixer_cls = partial(MHA, num_heads=dim // 64)
if mlp_cls is None:
mlp_cls = partial(Mlp, hidden_features=4 * dim)
self.mixer = mixer_cls(dim)
self.dropout1 = dropout_cls(resid_dropout1)
self.drop_path1 = StochasticDepth(drop_path1, mode="row")
self.norm1 = norm_cls(dim)
self.mlp = mlp_cls(dim)
if not isinstance(self.mlp, nn.Identity):
self.dropout2 = dropout_cls(resid_dropout2)
self.drop_path2 = StochasticDepth(drop_path2, mode="row")
self.norm2 = norm_cls(dim)
if self.fused_dropout_add_ln:
assert layer_norm_fn is not None, "Triton is not installed"
assert isinstance(self.norm1, (nn.LayerNorm, RMSNorm)) and isinstance(
self.dropout1, nn.Dropout
)
# TD [2023-01-07]: TODO: During training, if sequence_parallel is False and dropout != 0.0,
# then the input to each worker in the tensor parallel group will be different.
# This would produce wrong outputs? Somehow we'd need to sync the RNG state across workers.
# For now this is not an issue because we always use sequence_parallel=True during training
# and only use sequence_parallel=False during inference.
# Mark the norm parameters as "sequence_parallel" so that we run all-reduce on their grads.
if sequence_parallel:
for p in self.norm1.parameters():
p._sequence_parallel = True
if hasattr(self, "norm2"):
for p in self.norm2.parameters():
p._sequence_parallel = True
# Mark the norm parameters as "shared_params" so that we sync their values at init.
if mark_shared_params:
for p in self.norm1.parameters():
p._shared_params = True
if hasattr(self, "norm2"):
for p in self.norm2.parameters():
p._shared_params = True
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
return self.mixer.allocate_inference_cache(
batch_size, max_seqlen, dtype=dtype, **kwargs
)
def forward(
self,
hidden_states: Tensor,
residual: Optional[Tensor] = None,
mixer_subset=None,
mixer_kwargs=None,
):
r"""Pass the input through the encoder layer.
Args:
hidden_states: the sequence to the encoder layer (required).
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
mixer_subset: for cross-attention only. If not None, will take a subset of x
before applying the query projection. Useful for e.g., ViT where we only care
about the CLS token in the last layer.
"""
if self.prenorm:
if not self.fused_dropout_add_ln:
dropped = self.drop_path1(self.dropout1(hidden_states))
residual = (dropped + residual) if residual is not None else dropped
hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
if self.residual_in_fp32:
residual = residual.to(torch.float32)
else:
if self.drop_path1.p == 0 or not self.training:
rowscale1 = None
else:
rowscale1 = self.drop_path1(
torch.ones(
hidden_states.shape[:-1],
device=hidden_states.device,
dtype=hidden_states.dtype,
)
)
hidden_states, residual = layer_norm_fn(
hidden_states,
self.norm1.weight,
self.norm1.bias,
residual=residual,
eps=self.norm1.eps,
dropout_p=self.dropout1.p if self.training else 0.0,
rowscale=rowscale1,
prenorm=True,
residual_in_fp32=self.residual_in_fp32,
is_rms_norm=isinstance(self.norm1, RMSNorm),
)
if mixer_kwargs is None:
mixer_kwargs = {}
if mixer_subset is not None:
mixer_kwargs["mixer_subset"] = mixer_subset
hidden_states = self.mixer(hidden_states, **mixer_kwargs)
if mixer_subset is not None:
residual = residual[:, mixer_subset]
if not isinstance(self.mlp, nn.Identity):
if not self.fused_dropout_add_ln:
dropped = self.drop_path2(self.dropout2(hidden_states))
residual = (dropped + residual) if residual is not None else dropped
hidden_states = self.norm2(
residual.to(dtype=self.norm2.weight.dtype)
)
if self.residual_in_fp32:
residual = residual.to(torch.float32)
else:
if self.drop_path2.p == 0 or not self.training:
rowscale2 = None
else:
rowscale2 = self.drop_path2(
torch.ones(
hidden_states.shape[:-1],
device=hidden_states.device,
dtype=hidden_states.dtype,
)
)
hidden_states, residual = layer_norm_fn(
hidden_states,
self.norm2.weight,
self.norm2.bias,
residual=residual,
eps=self.norm2.eps,
dropout_p=self.dropout2.p if self.training else 0.0,
rowscale=rowscale2,
prenorm=True,
residual_in_fp32=self.residual_in_fp32,
is_rms_norm=isinstance(self.norm2, RMSNorm),
)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
else:
assert residual is None
mixer_out = self.mixer(
hidden_states, **(mixer_kwargs if mixer_kwargs is not None else {})
)
if self.return_residual: # mixer out is actually a pair here
mixer_out, hidden_states = mixer_out
if not self.fused_dropout_add_ln:
hidden_states = self.norm1(
(self.drop_path1(self.dropout1(mixer_out)) + hidden_states).to(
dtype=self.norm1.weight.dtype
)
)
else:
if self.drop_path1.p == 0 or not self.training:
rowscale1 = None
else:
rowscale1 = self.drop_path1(
torch.ones(
mixer_out.shape[:-1],
device=mixer_out.device,
dtype=mixer_out.dtype,
)
)
hidden_states = layer_norm_fn(
mixer_out,
self.norm1.weight,
self.norm1.bias,
residual=hidden_states,
eps=self.norm1.eps,
dropout_p=self.dropout1.p if self.training else 0.0,
rowscale=rowscale1,
prenorm=False,
is_rms_norm=isinstance(self.norm1, RMSNorm),
)
if not isinstance(self.mlp, nn.Identity):
mlp_out = self.mlp(hidden_states, task=mixer_kwargs.get('task'))
if self.return_residual: # mlp out is actually a pair here
mlp_out, hidden_states = mlp_out
if not self.fused_dropout_add_ln:
hidden_states = self.norm2(
(self.drop_path2(self.dropout2(mlp_out)) + hidden_states).to(
dtype=self.norm2.weight.dtype
)
)
else:
if self.drop_path2.p == 0 or not self.training:
rowscale2 = None
else:
rowscale2 = self.drop_path2(
torch.ones(
mlp_out.shape[:-1],
device=mlp_out.device,
dtype=mlp_out.dtype,
)
)
hidden_states = layer_norm_fn(
mlp_out,
self.norm2.weight,
self.norm2.bias,
residual=hidden_states,
eps=self.norm2.eps,
dropout_p=self.dropout2.p if self.training else 0.0,
rowscale=rowscale2,
prenorm=False,
is_rms_norm=isinstance(self.norm2, RMSNorm),
)
return hidden_states
class ParallelBlock(nn.Module):
"""The attention (mixer) and MLP blocks are done in parallel, similar to GPT-J, GPT-NeoX,
and PaLM.
"""
def __init__(
self,
dim,
mixer_cls=None,
mlp_cls=None,
norm_cls=nn.LayerNorm,
dropout_cls=nn.Dropout,
resid_dropout1=0.0,
resid_dropout2=0.0,
tied_norm=False,
fused_dropout_add_ln=False,
residual_in_fp32=False,
sequence_parallel=False,
mark_shared_params=False,
):
"""
This Block has a slightly different structure compared to a regular
prenorm Transformer block.
The standard block is: LN -> MHA / MLP -> Dropout -> Add.
[Ref: https://arxiv.org/abs/2002.04745]
Here we have: Dropout -> Add -> LN -> MHA / MLP, returning both
the hidden_states (output1 of the MHA / MLP) and the residual.
This is for performance reasons, as we can fuse the dropout, add and LayerNorm.
The residual needs to be provided (except for the very first block).
"""
super().__init__()
self.tied_norm = tied_norm
self.fused_dropout_add_ln = fused_dropout_add_ln
self.residual_in_fp32 = residual_in_fp32
if mixer_cls is None:
mixer_cls = partial(MHA, num_heads=dim // 64)
if mlp_cls is None:
mlp_cls = partial(Mlp, hidden_features=4 * dim)
self.mixer = mixer_cls(dim)
self.dropout1 = dropout_cls(resid_dropout1)
self.norm1 = norm_cls(dim)
self.mlp = mlp_cls(dim)
self.dropout2 = dropout_cls(resid_dropout2)
if not self.tied_norm:
self.norm2 = norm_cls(dim)
if self.fused_dropout_add_ln:
assert layer_norm_fn is not None, "Triton is not installed"
assert isinstance(self.norm1, (nn.LayerNorm, RMSNorm)) and isinstance(
self.dropout1, nn.Dropout
)
# TD [2023-01-07]: TODO: During training, if sequence_parallel is False and dropout != 0.0,
# then the input to each worker in the tensor parallel group will be different.
# This would produce wrong outputs? Somehow we'd need to sync the RNG state across workers.
# For now this is not an issue because we always use sequence_parallel=True during training
# and only use sequence_parallel=False during inference.
# Mark the norm parameters as "sequence_parallel" so that we run all-reduce on their grads.
if sequence_parallel:
for p in self.norm1.parameters():
p._sequence_parallel = True
if hasattr(self, "norm2"):
for p in self.norm2.parameters():
p._sequence_parallel = True
# Mark the norm parameters as "shared_params" so that we sync their values at init.
if mark_shared_params:
for p in self.norm1.parameters():
p._shared_params = True
if hasattr(self, "norm2"):
for p in self.norm2.parameters():
p._shared_params = True
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
return self.mixer.allocate_inference_cache(
batch_size, max_seqlen, dtype=dtype, **kwargs
)
def forward(
self,
hidden_states1: Tensor,
hidden_states2: Optional[Tensor] = None,
residual: Optional[Tensor] = None,
mixer_kwargs=None,
):
r"""Pass the input through the encoder layer.
Args:
hidden_states1: the output of the previous attention (mixer) or embedding layer.
hidden_states2: the output of the previous MLP layer (if None, will use hidden_states1).
residual.
"""
# TODO: Ideally we should only do the allgather / allreduce once for
# the Linear to MLP & Attention
if not self.fused_dropout_add_ln:
dropped1 = self.dropout1(hidden_states1)
# For the very 1st block, we only want 1 dropout, not two different dropouts
if hidden_states2 is not None:
dropped2 = self.dropout2(hidden_states2)
residual = (
(residual + dropped1 + dropped2)
if residual is not None
else dropped1 + dropped2
)
else:
residual = (residual + dropped1) if residual is not None else dropped1
hidden_states1 = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
hidden_states2 = (
self.norm2(residual.to(dtype=self.norm2.weight.dtype))
if not self.tied_norm
else hidden_states1
)
if self.residual_in_fp32:
residual = residual.to(torch.float32)
else:
weight2, bias2 = (
(self.norm2.weight, self.norm2.bias)
if not self.tied_norm
else (None, None)
)
hidden_states1, *rest, residual = layer_norm_fn(
hidden_states1,
self.norm1.weight,
self.norm1.bias,
residual=residual,
x1=hidden_states2,
weight1=weight2,
bias1=bias2,
eps=self.norm1.eps,
dropout_p=self.dropout1.p if self.training else 0.0,
prenorm=True,
residual_in_fp32=self.residual_in_fp32,
is_rms_norm=isinstance(self.norm1, RMSNorm),
)
if self.tied_norm:
hidden_states2 = hidden_states1
else:
(hidden_states2,) = rest
if mixer_kwargs is None:
mixer_kwargs = {}
hidden_states1 = self.mixer(hidden_states1, **mixer_kwargs)
hidden_states2 = self.mlp(hidden_states2)
return hidden_states1, hidden_states2, residual
|