isacat commited on
Commit
fced879
·
1 Parent(s): 1bd2b55

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +2606 -0
README.md ADDED
@@ -0,0 +1,2606 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pipeline_tag: sentence-similarity
2
+ tags:
3
+ - finetuner
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - mteb
8
+ datasets:
9
+ - jinaai/negation-dataset
10
+ language: en
11
+ license: apache-2.0
12
+ model-index:
13
+ - name: jina-embedding-s-en-v2
14
+ results:
15
+ - task:
16
+ type: Classification
17
+ dataset:
18
+ type: mteb/amazon_counterfactual
19
+ name: MTEB AmazonCounterfactualClassification (en)
20
+ config: en
21
+ split: test
22
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
23
+ metrics:
24
+ - type: accuracy
25
+ value: 69.70149253731343
26
+ - type: ap
27
+ value: 32.22528779918184
28
+ - type: f1
29
+ value: 63.66857824618267
30
+ - task:
31
+ type: Classification
32
+ dataset:
33
+ type: mteb/amazon_polarity
34
+ name: MTEB AmazonPolarityClassification
35
+ config: default
36
+ split: test
37
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
38
+ metrics:
39
+ - type: accuracy
40
+ value: 79.55879999999999
41
+ - type: ap
42
+ value: 73.97885664972738
43
+ - type: f1
44
+ value: 79.4849322624122
45
+ - task:
46
+ type: Classification
47
+ dataset:
48
+ type: mteb/amazon_reviews_multi
49
+ name: MTEB AmazonReviewsClassification (en)
50
+ config: en
51
+ split: test
52
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
53
+ metrics:
54
+ - type: accuracy
55
+ value: 38.69
56
+ - type: f1
57
+ value: 37.17512734389121
58
+ - task:
59
+ type: Retrieval
60
+ dataset:
61
+ type: arguana
62
+ name: MTEB ArguAna
63
+ config: default
64
+ split: test
65
+ revision: None
66
+ metrics:
67
+ - type: map_at_1
68
+ value: 23.684
69
+ - type: map_at_10
70
+ value: 39.086999999999996
71
+ - type: map_at_100
72
+ value: 40.222
73
+ - type: map_at_1000
74
+ value: 40.231
75
+ - type: map_at_3
76
+ value: 34.282000000000004
77
+ - type: map_at_5
78
+ value: 36.689
79
+ - type: mrr_at_1
80
+ value: 23.826
81
+ - type: mrr_at_10
82
+ value: 39.147
83
+ - type: mrr_at_100
84
+ value: 40.282000000000004
85
+ - type: mrr_at_1000
86
+ value: 40.291
87
+ - type: mrr_at_3
88
+ value: 34.353
89
+ - type: mrr_at_5
90
+ value: 36.739
91
+ - type: ndcg_at_1
92
+ value: 23.684
93
+ - type: ndcg_at_10
94
+ value: 48.081
95
+ - type: ndcg_at_100
96
+ value: 52.902
97
+ - type: ndcg_at_1000
98
+ value: 53.111
99
+ - type: ndcg_at_3
100
+ value: 37.937
101
+ - type: ndcg_at_5
102
+ value: 42.32
103
+ - type: precision_at_1
104
+ value: 23.684
105
+ - type: precision_at_10
106
+ value: 7.703
107
+ - type: precision_at_100
108
+ value: 0.98
109
+ - type: precision_at_1000
110
+ value: 0.1
111
+ - type: precision_at_3
112
+ value: 16.192999999999998
113
+ - type: precision_at_5
114
+ value: 11.863
115
+ - type: recall_at_1
116
+ value: 23.684
117
+ - type: recall_at_10
118
+ value: 77.027
119
+ - type: recall_at_100
120
+ value: 98.009
121
+ - type: recall_at_1000
122
+ value: 99.57300000000001
123
+ - type: recall_at_3
124
+ value: 48.577999999999996
125
+ - type: recall_at_5
126
+ value: 59.317
127
+ - task:
128
+ type: Clustering
129
+ dataset:
130
+ type: mteb/arxiv-clustering-p2p
131
+ name: MTEB ArxivClusteringP2P
132
+ config: default
133
+ split: test
134
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
135
+ metrics:
136
+ - type: v_measure
137
+ value: 44.249612940073035
138
+ - task:
139
+ type: Clustering
140
+ dataset:
141
+ type: mteb/arxiv-clustering-s2s
142
+ name: MTEB ArxivClusteringS2S
143
+ config: default
144
+ split: test
145
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
146
+ metrics:
147
+ - type: v_measure
148
+ value: 35.39423011105325
149
+ - task:
150
+ type: Reranking
151
+ dataset:
152
+ type: mteb/askubuntudupquestions-reranking
153
+ name: MTEB AskUbuntuDupQuestions
154
+ config: default
155
+ split: test
156
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
157
+ metrics:
158
+ - type: map
159
+ value: 59.89078304869791
160
+ - type: mrr
161
+ value: 73.5045948203843
162
+ - task:
163
+ type: STS
164
+ dataset:
165
+ type: mteb/biosses-sts
166
+ name: MTEB BIOSSES
167
+ config: default
168
+ split: test
169
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
170
+ metrics:
171
+ - type: cos_sim_pearson
172
+ value: 82.49373811125967
173
+ - type: cos_sim_spearman
174
+ value: 81.0446177409314
175
+ - type: euclidean_pearson
176
+ value: 82.1327844624042
177
+ - type: euclidean_spearman
178
+ value: 81.0446177409314
179
+ - type: manhattan_pearson
180
+ value: 81.88575541723692
181
+ - type: manhattan_spearman
182
+ value: 81.0705219456341
183
+ - task:
184
+ type: Classification
185
+ dataset:
186
+ type: mteb/banking77
187
+ name: MTEB Banking77Classification
188
+ config: default
189
+ split: test
190
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
191
+ metrics:
192
+ - type: accuracy
193
+ value: 78.27272727272728
194
+ - type: f1
195
+ value: 77.36583416688741
196
+ - task:
197
+ type: Clustering
198
+ dataset:
199
+ type: mteb/biorxiv-clustering-p2p
200
+ name: MTEB BiorxivClusteringP2P
201
+ config: default
202
+ split: test
203
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
204
+ metrics:
205
+ - type: v_measure
206
+ value: 36.12447585258704
207
+ - task:
208
+ type: Clustering
209
+ dataset:
210
+ type: mteb/biorxiv-clustering-s2s
211
+ name: MTEB BiorxivClusteringS2S
212
+ config: default
213
+ split: test
214
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
215
+ metrics:
216
+ - type: v_measure
217
+ value: 29.305990951348743
218
+ - task:
219
+ type: Retrieval
220
+ dataset:
221
+ type: BeIR/cqadupstack
222
+ name: MTEB CQADupstackAndroidRetrieval
223
+ config: default
224
+ split: test
225
+ revision: None
226
+ metrics:
227
+ - type: map_at_1
228
+ value: 31.458000000000002
229
+ - type: map_at_10
230
+ value: 42.132
231
+ - type: map_at_100
232
+ value: 43.47
233
+ - type: map_at_1000
234
+ value: 43.612
235
+ - type: map_at_3
236
+ value: 38.718
237
+ - type: map_at_5
238
+ value: 40.556
239
+ - type: mrr_at_1
240
+ value: 38.627
241
+ - type: mrr_at_10
242
+ value: 47.998000000000005
243
+ - type: mrr_at_100
244
+ value: 48.726
245
+ - type: mrr_at_1000
246
+ value: 48.778
247
+ - type: mrr_at_3
248
+ value: 45.255
249
+ - type: mrr_at_5
250
+ value: 46.893
251
+ - type: ndcg_at_1
252
+ value: 38.627
253
+ - type: ndcg_at_10
254
+ value: 48.229
255
+ - type: ndcg_at_100
256
+ value: 53.108999999999995
257
+ - type: ndcg_at_1000
258
+ value: 55.385
259
+ - type: ndcg_at_3
260
+ value: 43.191
261
+ - type: ndcg_at_5
262
+ value: 45.385999999999996
263
+ - type: precision_at_1
264
+ value: 38.627
265
+ - type: precision_at_10
266
+ value: 9.142
267
+ - type: precision_at_100
268
+ value: 1.462
269
+ - type: precision_at_1000
270
+ value: 0.19499999999999998
271
+ - type: precision_at_3
272
+ value: 20.552999999999997
273
+ - type: precision_at_5
274
+ value: 14.677999999999999
275
+ - type: recall_at_1
276
+ value: 31.458000000000002
277
+ - type: recall_at_10
278
+ value: 59.619
279
+ - type: recall_at_100
280
+ value: 79.953
281
+ - type: recall_at_1000
282
+ value: 94.921
283
+ - type: recall_at_3
284
+ value: 44.744
285
+ - type: recall_at_5
286
+ value: 51.010999999999996
287
+ - task:
288
+ type: Retrieval
289
+ dataset:
290
+ type: BeIR/cqadupstack
291
+ name: MTEB CQADupstackEnglishRetrieval
292
+ config: default
293
+ split: test
294
+ revision: None
295
+ metrics:
296
+ - type: map_at_1
297
+ value: 26.762000000000004
298
+ - type: map_at_10
299
+ value: 35.366
300
+ - type: map_at_100
301
+ value: 36.481
302
+ - type: map_at_1000
303
+ value: 36.614999999999995
304
+ - type: map_at_3
305
+ value: 33.071
306
+ - type: map_at_5
307
+ value: 34.495
308
+ - type: mrr_at_1
309
+ value: 33.312000000000005
310
+ - type: mrr_at_10
311
+ value: 40.841
312
+ - type: mrr_at_100
313
+ value: 41.54
314
+ - type: mrr_at_1000
315
+ value: 41.592
316
+ - type: mrr_at_3
317
+ value: 38.928000000000004
318
+ - type: mrr_at_5
319
+ value: 40.119
320
+ - type: ndcg_at_1
321
+ value: 33.312000000000005
322
+ - type: ndcg_at_10
323
+ value: 40.238
324
+ - type: ndcg_at_100
325
+ value: 44.647
326
+ - type: ndcg_at_1000
327
+ value: 47.010999999999996
328
+ - type: ndcg_at_3
329
+ value: 36.991
330
+ - type: ndcg_at_5
331
+ value: 38.721
332
+ - type: precision_at_1
333
+ value: 33.312000000000005
334
+ - type: precision_at_10
335
+ value: 7.4079999999999995
336
+ - type: precision_at_100
337
+ value: 1.253
338
+ - type: precision_at_1000
339
+ value: 0.17500000000000002
340
+ - type: precision_at_3
341
+ value: 17.898
342
+ - type: precision_at_5
343
+ value: 12.687999999999999
344
+ - type: recall_at_1
345
+ value: 26.762000000000004
346
+ - type: recall_at_10
347
+ value: 48.41
348
+ - type: recall_at_100
349
+ value: 67.523
350
+ - type: recall_at_1000
351
+ value: 82.91199999999999
352
+ - type: recall_at_3
353
+ value: 38.6
354
+ - type: recall_at_5
355
+ value: 43.477
356
+ - task:
357
+ type: Retrieval
358
+ dataset:
359
+ type: BeIR/cqadupstack
360
+ name: MTEB CQADupstackGamingRetrieval
361
+ config: default
362
+ split: test
363
+ revision: None
364
+ metrics:
365
+ - type: map_at_1
366
+ value: 37.578
367
+ - type: map_at_10
368
+ value: 49.415
369
+ - type: map_at_100
370
+ value: 50.339
371
+ - type: map_at_1000
372
+ value: 50.402
373
+ - type: map_at_3
374
+ value: 46.412
375
+ - type: map_at_5
376
+ value: 48.183
377
+ - type: mrr_at_1
378
+ value: 43.072
379
+ - type: mrr_at_10
380
+ value: 52.82599999999999
381
+ - type: mrr_at_100
382
+ value: 53.456
383
+ - type: mrr_at_1000
384
+ value: 53.493
385
+ - type: mrr_at_3
386
+ value: 50.407999999999994
387
+ - type: mrr_at_5
388
+ value: 51.922000000000004
389
+ - type: ndcg_at_1
390
+ value: 43.072
391
+ - type: ndcg_at_10
392
+ value: 54.949000000000005
393
+ - type: ndcg_at_100
394
+ value: 58.744
395
+ - type: ndcg_at_1000
396
+ value: 60.150000000000006
397
+ - type: ndcg_at_3
398
+ value: 49.864000000000004
399
+ - type: ndcg_at_5
400
+ value: 52.503
401
+ - type: precision_at_1
402
+ value: 43.072
403
+ - type: precision_at_10
404
+ value: 8.734
405
+ - type: precision_at_100
406
+ value: 1.1520000000000001
407
+ - type: precision_at_1000
408
+ value: 0.132
409
+ - type: precision_at_3
410
+ value: 22.131999999999998
411
+ - type: precision_at_5
412
+ value: 15.21
413
+ - type: recall_at_1
414
+ value: 37.578
415
+ - type: recall_at_10
416
+ value: 67.918
417
+ - type: recall_at_100
418
+ value: 84.373
419
+ - type: recall_at_1000
420
+ value: 94.529
421
+ - type: recall_at_3
422
+ value: 54.457
423
+ - type: recall_at_5
424
+ value: 60.941
425
+ - task:
426
+ type: Retrieval
427
+ dataset:
428
+ type: BeIR/cqadupstack
429
+ name: MTEB CQADupstackGisRetrieval
430
+ config: default
431
+ split: test
432
+ revision: None
433
+ metrics:
434
+ - type: map_at_1
435
+ value: 23.394000000000002
436
+ - type: map_at_10
437
+ value: 31.791000000000004
438
+ - type: map_at_100
439
+ value: 32.64
440
+ - type: map_at_1000
441
+ value: 32.727000000000004
442
+ - type: map_at_3
443
+ value: 29.557
444
+ - type: map_at_5
445
+ value: 30.858999999999998
446
+ - type: mrr_at_1
447
+ value: 25.085
448
+ - type: mrr_at_10
449
+ value: 33.721000000000004
450
+ - type: mrr_at_100
451
+ value: 34.492
452
+ - type: mrr_at_1000
453
+ value: 34.564
454
+ - type: mrr_at_3
455
+ value: 31.619999999999997
456
+ - type: mrr_at_5
457
+ value: 32.896
458
+ - type: ndcg_at_1
459
+ value: 25.085
460
+ - type: ndcg_at_10
461
+ value: 36.370000000000005
462
+ - type: ndcg_at_100
463
+ value: 40.96
464
+ - type: ndcg_at_1000
465
+ value: 43.171
466
+ - type: ndcg_at_3
467
+ value: 32.104
468
+ - type: ndcg_at_5
469
+ value: 34.300000000000004
470
+ - type: precision_at_1
471
+ value: 25.085
472
+ - type: precision_at_10
473
+ value: 5.537
474
+ - type: precision_at_100
475
+ value: 0.8340000000000001
476
+ - type: precision_at_1000
477
+ value: 0.105
478
+ - type: precision_at_3
479
+ value: 13.71
480
+ - type: precision_at_5
481
+ value: 9.514
482
+ - type: recall_at_1
483
+ value: 23.394000000000002
484
+ - type: recall_at_10
485
+ value: 48.549
486
+ - type: recall_at_100
487
+ value: 70.341
488
+ - type: recall_at_1000
489
+ value: 87.01299999999999
490
+ - type: recall_at_3
491
+ value: 36.947
492
+ - type: recall_at_5
493
+ value: 42.365
494
+ - task:
495
+ type: Retrieval
496
+ dataset:
497
+ type: BeIR/cqadupstack
498
+ name: MTEB CQADupstackMathematicaRetrieval
499
+ config: default
500
+ split: test
501
+ revision: None
502
+ metrics:
503
+ - type: map_at_1
504
+ value: 14.818000000000001
505
+ - type: map_at_10
506
+ value: 21.773999999999997
507
+ - type: map_at_100
508
+ value: 22.787
509
+ - type: map_at_1000
510
+ value: 22.915
511
+ - type: map_at_3
512
+ value: 19.414
513
+ - type: map_at_5
514
+ value: 20.651
515
+ - type: mrr_at_1
516
+ value: 18.657
517
+ - type: mrr_at_10
518
+ value: 25.794
519
+ - type: mrr_at_100
520
+ value: 26.695999999999998
521
+ - type: mrr_at_1000
522
+ value: 26.776
523
+ - type: mrr_at_3
524
+ value: 23.279
525
+ - type: mrr_at_5
526
+ value: 24.598
527
+ - type: ndcg_at_1
528
+ value: 18.657
529
+ - type: ndcg_at_10
530
+ value: 26.511000000000003
531
+ - type: ndcg_at_100
532
+ value: 31.447999999999997
533
+ - type: ndcg_at_1000
534
+ value: 34.71
535
+ - type: ndcg_at_3
536
+ value: 21.92
537
+ - type: ndcg_at_5
538
+ value: 23.938000000000002
539
+ - type: precision_at_1
540
+ value: 18.657
541
+ - type: precision_at_10
542
+ value: 4.9
543
+ - type: precision_at_100
544
+ value: 0.851
545
+ - type: precision_at_1000
546
+ value: 0.127
547
+ - type: precision_at_3
548
+ value: 10.488999999999999
549
+ - type: precision_at_5
550
+ value: 7.710999999999999
551
+ - type: recall_at_1
552
+ value: 14.818000000000001
553
+ - type: recall_at_10
554
+ value: 37.408
555
+ - type: recall_at_100
556
+ value: 58.81999999999999
557
+ - type: recall_at_1000
558
+ value: 82.612
559
+ - type: recall_at_3
560
+ value: 24.561
561
+ - type: recall_at_5
562
+ value: 29.685
563
+ - task:
564
+ type: Retrieval
565
+ dataset:
566
+ type: BeIR/cqadupstack
567
+ name: MTEB CQADupstackPhysicsRetrieval
568
+ config: default
569
+ split: test
570
+ revision: None
571
+ metrics:
572
+ - type: map_at_1
573
+ value: 26.332
574
+ - type: map_at_10
575
+ value: 35.366
576
+ - type: map_at_100
577
+ value: 36.569
578
+ - type: map_at_1000
579
+ value: 36.689
580
+ - type: map_at_3
581
+ value: 32.582
582
+ - type: map_at_5
583
+ value: 34.184
584
+ - type: mrr_at_1
585
+ value: 32.05
586
+ - type: mrr_at_10
587
+ value: 40.902
588
+ - type: mrr_at_100
589
+ value: 41.754000000000005
590
+ - type: mrr_at_1000
591
+ value: 41.811
592
+ - type: mrr_at_3
593
+ value: 38.547
594
+ - type: mrr_at_5
595
+ value: 40.019
596
+ - type: ndcg_at_1
597
+ value: 32.05
598
+ - type: ndcg_at_10
599
+ value: 40.999
600
+ - type: ndcg_at_100
601
+ value: 46.284
602
+ - type: ndcg_at_1000
603
+ value: 48.698
604
+ - type: ndcg_at_3
605
+ value: 36.39
606
+ - type: ndcg_at_5
607
+ value: 38.699
608
+ - type: precision_at_1
609
+ value: 32.05
610
+ - type: precision_at_10
611
+ value: 7.315
612
+ - type: precision_at_100
613
+ value: 1.172
614
+ - type: precision_at_1000
615
+ value: 0.156
616
+ - type: precision_at_3
617
+ value: 17.036
618
+ - type: precision_at_5
619
+ value: 12.089
620
+ - type: recall_at_1
621
+ value: 26.332
622
+ - type: recall_at_10
623
+ value: 52.410000000000004
624
+ - type: recall_at_100
625
+ value: 74.763
626
+ - type: recall_at_1000
627
+ value: 91.03
628
+ - type: recall_at_3
629
+ value: 39.527
630
+ - type: recall_at_5
631
+ value: 45.517
632
+ - task:
633
+ type: Retrieval
634
+ dataset:
635
+ type: BeIR/cqadupstack
636
+ name: MTEB CQADupstackProgrammersRetrieval
637
+ config: default
638
+ split: test
639
+ revision: None
640
+ metrics:
641
+ - type: map_at_1
642
+ value: 22.849
643
+ - type: map_at_10
644
+ value: 31.502000000000002
645
+ - type: map_at_100
646
+ value: 32.854
647
+ - type: map_at_1000
648
+ value: 32.975
649
+ - type: map_at_3
650
+ value: 28.997
651
+ - type: map_at_5
652
+ value: 30.508999999999997
653
+ - type: mrr_at_1
654
+ value: 28.195999999999998
655
+ - type: mrr_at_10
656
+ value: 36.719
657
+ - type: mrr_at_100
658
+ value: 37.674
659
+ - type: mrr_at_1000
660
+ value: 37.743
661
+ - type: mrr_at_3
662
+ value: 34.532000000000004
663
+ - type: mrr_at_5
664
+ value: 35.845
665
+ - type: ndcg_at_1
666
+ value: 28.195999999999998
667
+ - type: ndcg_at_10
668
+ value: 36.605
669
+ - type: ndcg_at_100
670
+ value: 42.524
671
+ - type: ndcg_at_1000
672
+ value: 45.171
673
+ - type: ndcg_at_3
674
+ value: 32.574
675
+ - type: ndcg_at_5
676
+ value: 34.617
677
+ - type: precision_at_1
678
+ value: 28.195999999999998
679
+ - type: precision_at_10
680
+ value: 6.598
681
+ - type: precision_at_100
682
+ value: 1.121
683
+ - type: precision_at_1000
684
+ value: 0.153
685
+ - type: precision_at_3
686
+ value: 15.601
687
+ - type: precision_at_5
688
+ value: 11.073
689
+ - type: recall_at_1
690
+ value: 22.849
691
+ - type: recall_at_10
692
+ value: 46.528000000000006
693
+ - type: recall_at_100
694
+ value: 72.09
695
+ - type: recall_at_1000
696
+ value: 90.398
697
+ - type: recall_at_3
698
+ value: 35.116
699
+ - type: recall_at_5
700
+ value: 40.778
701
+ - task:
702
+ type: Retrieval
703
+ dataset:
704
+ type: BeIR/cqadupstack
705
+ name: MTEB CQADupstackRetrieval
706
+ config: default
707
+ split: test
708
+ revision: None
709
+ metrics:
710
+ - type: map_at_1
711
+ value: 24.319500000000005
712
+ - type: map_at_10
713
+ value: 32.530166666666666
714
+ - type: map_at_100
715
+ value: 33.61566666666667
716
+ - type: map_at_1000
717
+ value: 33.73808333333333
718
+ - type: map_at_3
719
+ value: 30.074583333333326
720
+ - type: map_at_5
721
+ value: 31.429666666666662
722
+ - type: mrr_at_1
723
+ value: 28.675916666666666
724
+ - type: mrr_at_10
725
+ value: 36.49308333333334
726
+ - type: mrr_at_100
727
+ value: 37.310583333333334
728
+ - type: mrr_at_1000
729
+ value: 37.37616666666666
730
+ - type: mrr_at_3
731
+ value: 34.283166666666666
732
+ - type: mrr_at_5
733
+ value: 35.54333333333334
734
+ - type: ndcg_at_1
735
+ value: 28.675916666666666
736
+ - type: ndcg_at_10
737
+ value: 37.403416666666665
738
+ - type: ndcg_at_100
739
+ value: 42.25783333333333
740
+ - type: ndcg_at_1000
741
+ value: 44.778333333333336
742
+ - type: ndcg_at_3
743
+ value: 33.17099999999999
744
+ - type: ndcg_at_5
745
+ value: 35.12666666666667
746
+ - type: precision_at_1
747
+ value: 28.675916666666666
748
+ - type: precision_at_10
749
+ value: 6.463083333333334
750
+ - type: precision_at_100
751
+ value: 1.0585
752
+ - type: precision_at_1000
753
+ value: 0.14633333333333332
754
+ - type: precision_at_3
755
+ value: 15.158999999999997
756
+ - type: precision_at_5
757
+ value: 10.673916666666667
758
+ - type: recall_at_1
759
+ value: 24.319500000000005
760
+ - type: recall_at_10
761
+ value: 47.9135
762
+ - type: recall_at_100
763
+ value: 69.40266666666666
764
+ - type: recall_at_1000
765
+ value: 87.12566666666666
766
+ - type: recall_at_3
767
+ value: 36.03149999999999
768
+ - type: recall_at_5
769
+ value: 41.12791666666668
770
+ - task:
771
+ type: Retrieval
772
+ dataset:
773
+ type: BeIR/cqadupstack
774
+ name: MTEB CQADupstackStatsRetrieval
775
+ config: default
776
+ split: test
777
+ revision: None
778
+ metrics:
779
+ - type: map_at_1
780
+ value: 22.997
781
+ - type: map_at_10
782
+ value: 28.754999999999995
783
+ - type: map_at_100
784
+ value: 29.555999999999997
785
+ - type: map_at_1000
786
+ value: 29.653000000000002
787
+ - type: map_at_3
788
+ value: 27.069
789
+ - type: map_at_5
790
+ value: 27.884999999999998
791
+ - type: mrr_at_1
792
+ value: 25.767
793
+ - type: mrr_at_10
794
+ value: 31.195
795
+ - type: mrr_at_100
796
+ value: 31.964
797
+ - type: mrr_at_1000
798
+ value: 32.039
799
+ - type: mrr_at_3
800
+ value: 29.601
801
+ - type: mrr_at_5
802
+ value: 30.345
803
+ - type: ndcg_at_1
804
+ value: 25.767
805
+ - type: ndcg_at_10
806
+ value: 32.234
807
+ - type: ndcg_at_100
808
+ value: 36.461
809
+ - type: ndcg_at_1000
810
+ value: 39.005
811
+ - type: ndcg_at_3
812
+ value: 29.052
813
+ - type: ndcg_at_5
814
+ value: 30.248
815
+ - type: precision_at_1
816
+ value: 25.767
817
+ - type: precision_at_10
818
+ value: 4.893
819
+ - type: precision_at_100
820
+ value: 0.761
821
+ - type: precision_at_1000
822
+ value: 0.105
823
+ - type: precision_at_3
824
+ value: 12.219
825
+ - type: precision_at_5
826
+ value: 8.19
827
+ - type: recall_at_1
828
+ value: 22.997
829
+ - type: recall_at_10
830
+ value: 40.652
831
+ - type: recall_at_100
832
+ value: 60.302
833
+ - type: recall_at_1000
834
+ value: 79.17999999999999
835
+ - type: recall_at_3
836
+ value: 31.680999999999997
837
+ - type: recall_at_5
838
+ value: 34.698
839
+ - task:
840
+ type: Retrieval
841
+ dataset:
842
+ type: BeIR/cqadupstack
843
+ name: MTEB CQADupstackTexRetrieval
844
+ config: default
845
+ split: test
846
+ revision: None
847
+ metrics:
848
+ - type: map_at_1
849
+ value: 16.3
850
+ - type: map_at_10
851
+ value: 22.581
852
+ - type: map_at_100
853
+ value: 23.517
854
+ - type: map_at_1000
855
+ value: 23.638
856
+ - type: map_at_3
857
+ value: 20.567
858
+ - type: map_at_5
859
+ value: 21.688
860
+ - type: mrr_at_1
861
+ value: 19.683
862
+ - type: mrr_at_10
863
+ value: 26.185000000000002
864
+ - type: mrr_at_100
865
+ value: 27.014
866
+ - type: mrr_at_1000
867
+ value: 27.092
868
+ - type: mrr_at_3
869
+ value: 24.145
870
+ - type: mrr_at_5
871
+ value: 25.308999999999997
872
+ - type: ndcg_at_1
873
+ value: 19.683
874
+ - type: ndcg_at_10
875
+ value: 26.699
876
+ - type: ndcg_at_100
877
+ value: 31.35
878
+ - type: ndcg_at_1000
879
+ value: 34.348
880
+ - type: ndcg_at_3
881
+ value: 23.026
882
+ - type: ndcg_at_5
883
+ value: 24.731
884
+ - type: precision_at_1
885
+ value: 19.683
886
+ - type: precision_at_10
887
+ value: 4.814
888
+ - type: precision_at_100
889
+ value: 0.836
890
+ - type: precision_at_1000
891
+ value: 0.126
892
+ - type: precision_at_3
893
+ value: 10.782
894
+ - type: precision_at_5
895
+ value: 7.825
896
+ - type: recall_at_1
897
+ value: 16.3
898
+ - type: recall_at_10
899
+ value: 35.521
900
+ - type: recall_at_100
901
+ value: 56.665
902
+ - type: recall_at_1000
903
+ value: 78.361
904
+ - type: recall_at_3
905
+ value: 25.223000000000003
906
+ - type: recall_at_5
907
+ value: 29.626
908
+ - task:
909
+ type: Retrieval
910
+ dataset:
911
+ type: BeIR/cqadupstack
912
+ name: MTEB CQADupstackUnixRetrieval
913
+ config: default
914
+ split: test
915
+ revision: None
916
+ metrics:
917
+ - type: map_at_1
918
+ value: 24.596999999999998
919
+ - type: map_at_10
920
+ value: 32.54
921
+ - type: map_at_100
922
+ value: 33.548
923
+ - type: map_at_1000
924
+ value: 33.661
925
+ - type: map_at_3
926
+ value: 30.134
927
+ - type: map_at_5
928
+ value: 31.468
929
+ - type: mrr_at_1
930
+ value: 28.825
931
+ - type: mrr_at_10
932
+ value: 36.495
933
+ - type: mrr_at_100
934
+ value: 37.329
935
+ - type: mrr_at_1000
936
+ value: 37.397999999999996
937
+ - type: mrr_at_3
938
+ value: 34.359
939
+ - type: mrr_at_5
940
+ value: 35.53
941
+ - type: ndcg_at_1
942
+ value: 28.825
943
+ - type: ndcg_at_10
944
+ value: 37.341
945
+ - type: ndcg_at_100
946
+ value: 42.221
947
+ - type: ndcg_at_1000
948
+ value: 44.799
949
+ - type: ndcg_at_3
950
+ value: 33.058
951
+ - type: ndcg_at_5
952
+ value: 34.961999999999996
953
+ - type: precision_at_1
954
+ value: 28.825
955
+ - type: precision_at_10
956
+ value: 6.175
957
+ - type: precision_at_100
958
+ value: 0.97
959
+ - type: precision_at_1000
960
+ value: 0.13
961
+ - type: precision_at_3
962
+ value: 14.924999999999999
963
+ - type: precision_at_5
964
+ value: 10.392
965
+ - type: recall_at_1
966
+ value: 24.596999999999998
967
+ - type: recall_at_10
968
+ value: 48.067
969
+ - type: recall_at_100
970
+ value: 69.736
971
+ - type: recall_at_1000
972
+ value: 87.855
973
+ - type: recall_at_3
974
+ value: 36.248999999999995
975
+ - type: recall_at_5
976
+ value: 41.086
977
+ - task:
978
+ type: Retrieval
979
+ dataset:
980
+ type: BeIR/cqadupstack
981
+ name: MTEB CQADupstackWebmastersRetrieval
982
+ config: default
983
+ split: test
984
+ revision: None
985
+ metrics:
986
+ - type: map_at_1
987
+ value: 24.224999999999998
988
+ - type: map_at_10
989
+ value: 31.826
990
+ - type: map_at_100
991
+ value: 33.366
992
+ - type: map_at_1000
993
+ value: 33.6
994
+ - type: map_at_3
995
+ value: 29.353
996
+ - type: map_at_5
997
+ value: 30.736
998
+ - type: mrr_at_1
999
+ value: 28.656
1000
+ - type: mrr_at_10
1001
+ value: 36.092
1002
+ - type: mrr_at_100
1003
+ value: 37.076
1004
+ - type: mrr_at_1000
1005
+ value: 37.141999999999996
1006
+ - type: mrr_at_3
1007
+ value: 33.86
1008
+ - type: mrr_at_5
1009
+ value: 35.144999999999996
1010
+ - type: ndcg_at_1
1011
+ value: 28.656
1012
+ - type: ndcg_at_10
1013
+ value: 37.025999999999996
1014
+ - type: ndcg_at_100
1015
+ value: 42.844
1016
+ - type: ndcg_at_1000
1017
+ value: 45.716
1018
+ - type: ndcg_at_3
1019
+ value: 32.98
1020
+ - type: ndcg_at_5
1021
+ value: 34.922
1022
+ - type: precision_at_1
1023
+ value: 28.656
1024
+ - type: precision_at_10
1025
+ value: 6.976
1026
+ - type: precision_at_100
1027
+ value: 1.48
1028
+ - type: precision_at_1000
1029
+ value: 0.23700000000000002
1030
+ - type: precision_at_3
1031
+ value: 15.348999999999998
1032
+ - type: precision_at_5
1033
+ value: 11.028
1034
+ - type: recall_at_1
1035
+ value: 24.224999999999998
1036
+ - type: recall_at_10
1037
+ value: 46.589999999999996
1038
+ - type: recall_at_100
1039
+ value: 72.331
1040
+ - type: recall_at_1000
1041
+ value: 90.891
1042
+ - type: recall_at_3
1043
+ value: 34.996
1044
+ - type: recall_at_5
1045
+ value: 40.294000000000004
1046
+ - task:
1047
+ type: Retrieval
1048
+ dataset:
1049
+ type: BeIR/cqadupstack
1050
+ name: MTEB CQADupstackWordpressRetrieval
1051
+ config: default
1052
+ split: test
1053
+ revision: None
1054
+ metrics:
1055
+ - type: map_at_1
1056
+ value: 20.524
1057
+ - type: map_at_10
1058
+ value: 27.314
1059
+ - type: map_at_100
1060
+ value: 28.260999999999996
1061
+ - type: map_at_1000
1062
+ value: 28.37
1063
+ - type: map_at_3
1064
+ value: 25.020999999999997
1065
+ - type: map_at_5
1066
+ value: 25.942
1067
+ - type: mrr_at_1
1068
+ value: 22.181
1069
+ - type: mrr_at_10
1070
+ value: 29.149
1071
+ - type: mrr_at_100
1072
+ value: 30.006
1073
+ - type: mrr_at_1000
1074
+ value: 30.086000000000002
1075
+ - type: mrr_at_3
1076
+ value: 26.863999999999997
1077
+ - type: mrr_at_5
1078
+ value: 27.899
1079
+ - type: ndcg_at_1
1080
+ value: 22.181
1081
+ - type: ndcg_at_10
1082
+ value: 31.64
1083
+ - type: ndcg_at_100
1084
+ value: 36.502
1085
+ - type: ndcg_at_1000
1086
+ value: 39.176
1087
+ - type: ndcg_at_3
1088
+ value: 26.901999999999997
1089
+ - type: ndcg_at_5
1090
+ value: 28.493000000000002
1091
+ - type: precision_at_1
1092
+ value: 22.181
1093
+ - type: precision_at_10
1094
+ value: 5.065
1095
+ - type: precision_at_100
1096
+ value: 0.8099999999999999
1097
+ - type: precision_at_1000
1098
+ value: 0.11499999999999999
1099
+ - type: precision_at_3
1100
+ value: 11.214
1101
+ - type: precision_at_5
1102
+ value: 7.689
1103
+ - type: recall_at_1
1104
+ value: 20.524
1105
+ - type: recall_at_10
1106
+ value: 43.29
1107
+ - type: recall_at_100
1108
+ value: 65.935
1109
+ - type: recall_at_1000
1110
+ value: 85.80600000000001
1111
+ - type: recall_at_3
1112
+ value: 30.276999999999997
1113
+ - type: recall_at_5
1114
+ value: 34.056999999999995
1115
+ - task:
1116
+ type: Retrieval
1117
+ dataset:
1118
+ type: climate-fever
1119
+ name: MTEB ClimateFEVER
1120
+ config: default
1121
+ split: test
1122
+ revision: None
1123
+ metrics:
1124
+ - type: map_at_1
1125
+ value: 10.488999999999999
1126
+ - type: map_at_10
1127
+ value: 17.98
1128
+ - type: map_at_100
1129
+ value: 19.581
1130
+ - type: map_at_1000
1131
+ value: 19.739
1132
+ - type: map_at_3
1133
+ value: 15.054
1134
+ - type: map_at_5
1135
+ value: 16.439999999999998
1136
+ - type: mrr_at_1
1137
+ value: 23.192
1138
+ - type: mrr_at_10
1139
+ value: 33.831
1140
+ - type: mrr_at_100
1141
+ value: 34.833
1142
+ - type: mrr_at_1000
1143
+ value: 34.881
1144
+ - type: mrr_at_3
1145
+ value: 30.793
1146
+ - type: mrr_at_5
1147
+ value: 32.535
1148
+ - type: ndcg_at_1
1149
+ value: 23.192
1150
+ - type: ndcg_at_10
1151
+ value: 25.446
1152
+ - type: ndcg_at_100
1153
+ value: 31.948
1154
+ - type: ndcg_at_1000
1155
+ value: 35.028
1156
+ - type: ndcg_at_3
1157
+ value: 20.744
1158
+ - type: ndcg_at_5
1159
+ value: 22.233
1160
+ - type: precision_at_1
1161
+ value: 23.192
1162
+ - type: precision_at_10
1163
+ value: 8.026
1164
+ - type: precision_at_100
1165
+ value: 1.482
1166
+ - type: precision_at_1000
1167
+ value: 0.20500000000000002
1168
+ - type: precision_at_3
1169
+ value: 15.548
1170
+ - type: precision_at_5
1171
+ value: 11.87
1172
+ - type: recall_at_1
1173
+ value: 10.488999999999999
1174
+ - type: recall_at_10
1175
+ value: 30.865
1176
+ - type: recall_at_100
1177
+ value: 53.428
1178
+ - type: recall_at_1000
1179
+ value: 70.89
1180
+ - type: recall_at_3
1181
+ value: 19.245
1182
+ - type: recall_at_5
1183
+ value: 23.657
1184
+ - task:
1185
+ type: Retrieval
1186
+ dataset:
1187
+ type: dbpedia-entity
1188
+ name: MTEB DBPedia
1189
+ config: default
1190
+ split: test
1191
+ revision: None
1192
+ metrics:
1193
+ - type: map_at_1
1194
+ value: 7.123
1195
+ - type: map_at_10
1196
+ value: 14.448
1197
+ - type: map_at_100
1198
+ value: 19.798
1199
+ - type: map_at_1000
1200
+ value: 21.082
1201
+ - type: map_at_3
1202
+ value: 10.815
1203
+ - type: map_at_5
1204
+ value: 12.422
1205
+ - type: mrr_at_1
1206
+ value: 53.5
1207
+ - type: mrr_at_10
1208
+ value: 63.117999999999995
1209
+ - type: mrr_at_100
1210
+ value: 63.617999999999995
1211
+ - type: mrr_at_1000
1212
+ value: 63.63799999999999
1213
+ - type: mrr_at_3
1214
+ value: 60.708
1215
+ - type: mrr_at_5
1216
+ value: 62.171
1217
+ - type: ndcg_at_1
1218
+ value: 42.125
1219
+ - type: ndcg_at_10
1220
+ value: 31.703
1221
+ - type: ndcg_at_100
1222
+ value: 35.935
1223
+ - type: ndcg_at_1000
1224
+ value: 43.173
1225
+ - type: ndcg_at_3
1226
+ value: 35.498000000000005
1227
+ - type: ndcg_at_5
1228
+ value: 33.645
1229
+ - type: precision_at_1
1230
+ value: 53.5
1231
+ - type: precision_at_10
1232
+ value: 25.025
1233
+ - type: precision_at_100
1234
+ value: 8.19
1235
+ - type: precision_at_1000
1236
+ value: 1.806
1237
+ - type: precision_at_3
1238
+ value: 39.083
1239
+ - type: precision_at_5
1240
+ value: 33.050000000000004
1241
+ - type: recall_at_1
1242
+ value: 7.123
1243
+ - type: recall_at_10
1244
+ value: 19.581
1245
+ - type: recall_at_100
1246
+ value: 42.061
1247
+ - type: recall_at_1000
1248
+ value: 65.879
1249
+ - type: recall_at_3
1250
+ value: 12.026
1251
+ - type: recall_at_5
1252
+ value: 14.846
1253
+ - task:
1254
+ type: Classification
1255
+ dataset:
1256
+ type: mteb/emotion
1257
+ name: MTEB EmotionClassification
1258
+ config: default
1259
+ split: test
1260
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1261
+ metrics:
1262
+ - type: accuracy
1263
+ value: 41.24
1264
+ - type: f1
1265
+ value: 36.76174115773002
1266
+ - task:
1267
+ type: Retrieval
1268
+ dataset:
1269
+ type: fever
1270
+ name: MTEB FEVER
1271
+ config: default
1272
+ split: test
1273
+ revision: None
1274
+ metrics:
1275
+ - type: map_at_1
1276
+ value: 47.821999999999996
1277
+ - type: map_at_10
1278
+ value: 59.794000000000004
1279
+ - type: map_at_100
1280
+ value: 60.316
1281
+ - type: map_at_1000
1282
+ value: 60.34
1283
+ - type: map_at_3
1284
+ value: 57.202
1285
+ - type: map_at_5
1286
+ value: 58.823
1287
+ - type: mrr_at_1
1288
+ value: 51.485
1289
+ - type: mrr_at_10
1290
+ value: 63.709
1291
+ - type: mrr_at_100
1292
+ value: 64.144
1293
+ - type: mrr_at_1000
1294
+ value: 64.158
1295
+ - type: mrr_at_3
1296
+ value: 61.251
1297
+ - type: mrr_at_5
1298
+ value: 62.818
1299
+ - type: ndcg_at_1
1300
+ value: 51.485
1301
+ - type: ndcg_at_10
1302
+ value: 66.097
1303
+ - type: ndcg_at_100
1304
+ value: 68.37
1305
+ - type: ndcg_at_1000
1306
+ value: 68.916
1307
+ - type: ndcg_at_3
1308
+ value: 61.12800000000001
1309
+ - type: ndcg_at_5
1310
+ value: 63.885000000000005
1311
+ - type: precision_at_1
1312
+ value: 51.485
1313
+ - type: precision_at_10
1314
+ value: 8.956999999999999
1315
+ - type: precision_at_100
1316
+ value: 1.02
1317
+ - type: precision_at_1000
1318
+ value: 0.108
1319
+ - type: precision_at_3
1320
+ value: 24.807000000000002
1321
+ - type: precision_at_5
1322
+ value: 16.387999999999998
1323
+ - type: recall_at_1
1324
+ value: 47.821999999999996
1325
+ - type: recall_at_10
1326
+ value: 81.773
1327
+ - type: recall_at_100
1328
+ value: 91.731
1329
+ - type: recall_at_1000
1330
+ value: 95.649
1331
+ - type: recall_at_3
1332
+ value: 68.349
1333
+ - type: recall_at_5
1334
+ value: 75.093
1335
+ - task:
1336
+ type: Retrieval
1337
+ dataset:
1338
+ type: fiqa
1339
+ name: MTEB FiQA2018
1340
+ config: default
1341
+ split: test
1342
+ revision: None
1343
+ metrics:
1344
+ - type: map_at_1
1345
+ value: 15.662999999999998
1346
+ - type: map_at_10
1347
+ value: 25.726
1348
+ - type: map_at_100
1349
+ value: 27.581
1350
+ - type: map_at_1000
1351
+ value: 27.772000000000002
1352
+ - type: map_at_3
1353
+ value: 21.859
1354
+ - type: map_at_5
1355
+ value: 24.058
1356
+ - type: mrr_at_1
1357
+ value: 30.247
1358
+ - type: mrr_at_10
1359
+ value: 39.581
1360
+ - type: mrr_at_100
1361
+ value: 40.594
1362
+ - type: mrr_at_1000
1363
+ value: 40.647
1364
+ - type: mrr_at_3
1365
+ value: 37.166
1366
+ - type: mrr_at_5
1367
+ value: 38.585
1368
+ - type: ndcg_at_1
1369
+ value: 30.247
1370
+ - type: ndcg_at_10
1371
+ value: 32.934999999999995
1372
+ - type: ndcg_at_100
1373
+ value: 40.062999999999995
1374
+ - type: ndcg_at_1000
1375
+ value: 43.492
1376
+ - type: ndcg_at_3
1377
+ value: 28.871000000000002
1378
+ - type: ndcg_at_5
1379
+ value: 30.492
1380
+ - type: precision_at_1
1381
+ value: 30.247
1382
+ - type: precision_at_10
1383
+ value: 9.522
1384
+ - type: precision_at_100
1385
+ value: 1.645
1386
+ - type: precision_at_1000
1387
+ value: 0.22499999999999998
1388
+ - type: precision_at_3
1389
+ value: 19.136
1390
+ - type: precision_at_5
1391
+ value: 14.753
1392
+ - type: recall_at_1
1393
+ value: 15.662999999999998
1394
+ - type: recall_at_10
1395
+ value: 39.595
1396
+ - type: recall_at_100
1397
+ value: 66.49199999999999
1398
+ - type: recall_at_1000
1399
+ value: 87.19
1400
+ - type: recall_at_3
1401
+ value: 26.346999999999998
1402
+ - type: recall_at_5
1403
+ value: 32.423
1404
+ - task:
1405
+ type: Retrieval
1406
+ dataset:
1407
+ type: hotpotqa
1408
+ name: MTEB HotpotQA
1409
+ config: default
1410
+ split: test
1411
+ revision: None
1412
+ metrics:
1413
+ - type: map_at_1
1414
+ value: 30.176
1415
+ - type: map_at_10
1416
+ value: 42.684
1417
+ - type: map_at_100
1418
+ value: 43.582
1419
+ - type: map_at_1000
1420
+ value: 43.668
1421
+ - type: map_at_3
1422
+ value: 39.964
1423
+ - type: map_at_5
1424
+ value: 41.589
1425
+ - type: mrr_at_1
1426
+ value: 60.351
1427
+ - type: mrr_at_10
1428
+ value: 67.669
1429
+ - type: mrr_at_100
1430
+ value: 68.089
1431
+ - type: mrr_at_1000
1432
+ value: 68.111
1433
+ - type: mrr_at_3
1434
+ value: 66.144
1435
+ - type: mrr_at_5
1436
+ value: 67.125
1437
+ - type: ndcg_at_1
1438
+ value: 60.351
1439
+ - type: ndcg_at_10
1440
+ value: 51.602000000000004
1441
+ - type: ndcg_at_100
1442
+ value: 55.186
1443
+ - type: ndcg_at_1000
1444
+ value: 56.96
1445
+ - type: ndcg_at_3
1446
+ value: 47.251
1447
+ - type: ndcg_at_5
1448
+ value: 49.584
1449
+ - type: precision_at_1
1450
+ value: 60.351
1451
+ - type: precision_at_10
1452
+ value: 10.804
1453
+ - type: precision_at_100
1454
+ value: 1.3639999999999999
1455
+ - type: precision_at_1000
1456
+ value: 0.16
1457
+ - type: precision_at_3
1458
+ value: 29.561
1459
+ - type: precision_at_5
1460
+ value: 19.581
1461
+ - type: recall_at_1
1462
+ value: 30.176
1463
+ - type: recall_at_10
1464
+ value: 54.018
1465
+ - type: recall_at_100
1466
+ value: 68.22399999999999
1467
+ - type: recall_at_1000
1468
+ value: 79.97999999999999
1469
+ - type: recall_at_3
1470
+ value: 44.342
1471
+ - type: recall_at_5
1472
+ value: 48.953
1473
+ - task:
1474
+ type: Classification
1475
+ dataset:
1476
+ type: mteb/imdb
1477
+ name: MTEB ImdbClassification
1478
+ config: default
1479
+ split: test
1480
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1481
+ metrics:
1482
+ - type: accuracy
1483
+ value: 71.28320000000001
1484
+ - type: ap
1485
+ value: 65.20730065157146
1486
+ - type: f1
1487
+ value: 71.19193683354304
1488
+ - task:
1489
+ type: Retrieval
1490
+ dataset:
1491
+ type: msmarco
1492
+ name: MTEB MSMARCO
1493
+ config: default
1494
+ split: dev
1495
+ revision: None
1496
+ metrics:
1497
+ - type: map_at_1
1498
+ value: 19.686
1499
+ - type: map_at_10
1500
+ value: 31.189
1501
+ - type: map_at_100
1502
+ value: 32.368
1503
+ - type: map_at_1000
1504
+ value: 32.43
1505
+ - type: map_at_3
1506
+ value: 27.577
1507
+ - type: map_at_5
1508
+ value: 29.603
1509
+ - type: mrr_at_1
1510
+ value: 20.201
1511
+ - type: mrr_at_10
1512
+ value: 31.762
1513
+ - type: mrr_at_100
1514
+ value: 32.882
1515
+ - type: mrr_at_1000
1516
+ value: 32.937
1517
+ - type: mrr_at_3
1518
+ value: 28.177999999999997
1519
+ - type: mrr_at_5
1520
+ value: 30.212
1521
+ - type: ndcg_at_1
1522
+ value: 20.215
1523
+ - type: ndcg_at_10
1524
+ value: 37.730999999999995
1525
+ - type: ndcg_at_100
1526
+ value: 43.501
1527
+ - type: ndcg_at_1000
1528
+ value: 45.031
1529
+ - type: ndcg_at_3
1530
+ value: 30.336000000000002
1531
+ - type: ndcg_at_5
1532
+ value: 33.961000000000006
1533
+ - type: precision_at_1
1534
+ value: 20.215
1535
+ - type: precision_at_10
1536
+ value: 6.036
1537
+ - type: precision_at_100
1538
+ value: 0.895
1539
+ - type: precision_at_1000
1540
+ value: 0.10300000000000001
1541
+ - type: precision_at_3
1542
+ value: 13.028
1543
+ - type: precision_at_5
1544
+ value: 9.633
1545
+ - type: recall_at_1
1546
+ value: 19.686
1547
+ - type: recall_at_10
1548
+ value: 57.867999999999995
1549
+ - type: recall_at_100
1550
+ value: 84.758
1551
+ - type: recall_at_1000
1552
+ value: 96.44500000000001
1553
+ - type: recall_at_3
1554
+ value: 37.726
1555
+ - type: recall_at_5
1556
+ value: 46.415
1557
+ - task:
1558
+ type: Classification
1559
+ dataset:
1560
+ type: mteb/mtop_domain
1561
+ name: MTEB MTOPDomainClassification (en)
1562
+ config: en
1563
+ split: test
1564
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1565
+ metrics:
1566
+ - type: accuracy
1567
+ value: 89.76972184222525
1568
+ - type: f1
1569
+ value: 89.11949030406099
1570
+ - task:
1571
+ type: Classification
1572
+ dataset:
1573
+ type: mteb/mtop_intent
1574
+ name: MTEB MTOPIntentClassification (en)
1575
+ config: en
1576
+ split: test
1577
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1578
+ metrics:
1579
+ - type: accuracy
1580
+ value: 55.57455540355677
1581
+ - type: f1
1582
+ value: 39.344920096224506
1583
+ - task:
1584
+ type: Classification
1585
+ dataset:
1586
+ type: mteb/amazon_massive_intent
1587
+ name: MTEB MassiveIntentClassification (en)
1588
+ config: en
1589
+ split: test
1590
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1591
+ metrics:
1592
+ - type: accuracy
1593
+ value: 63.772696704774724
1594
+ - type: f1
1595
+ value: 60.70041499812703
1596
+ - task:
1597
+ type: Classification
1598
+ dataset:
1599
+ type: mteb/amazon_massive_scenario
1600
+ name: MTEB MassiveScenarioClassification (en)
1601
+ config: en
1602
+ split: test
1603
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1604
+ metrics:
1605
+ - type: accuracy
1606
+ value: 69.16274377942166
1607
+ - type: f1
1608
+ value: 68.06744012208019
1609
+ - task:
1610
+ type: Clustering
1611
+ dataset:
1612
+ type: mteb/medrxiv-clustering-p2p
1613
+ name: MTEB MedrxivClusteringP2P
1614
+ config: default
1615
+ split: test
1616
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1617
+ metrics:
1618
+ - type: v_measure
1619
+ value: 31.822626760555522
1620
+ - task:
1621
+ type: Clustering
1622
+ dataset:
1623
+ type: mteb/medrxiv-clustering-s2s
1624
+ name: MTEB MedrxivClusteringS2S
1625
+ config: default
1626
+ split: test
1627
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1628
+ metrics:
1629
+ - type: v_measure
1630
+ value: 27.98469036402807
1631
+ - task:
1632
+ type: Reranking
1633
+ dataset:
1634
+ type: mteb/mind_small
1635
+ name: MTEB MindSmallReranking
1636
+ config: default
1637
+ split: test
1638
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1639
+ metrics:
1640
+ - type: map
1641
+ value: 30.911144124209166
1642
+ - type: mrr
1643
+ value: 31.950116175672292
1644
+ - task:
1645
+ type: Retrieval
1646
+ dataset:
1647
+ type: nfcorpus
1648
+ name: MTEB NFCorpus
1649
+ config: default
1650
+ split: test
1651
+ revision: None
1652
+ metrics:
1653
+ - type: map_at_1
1654
+ value: 5.157
1655
+ - type: map_at_10
1656
+ value: 11.086
1657
+ - type: map_at_100
1658
+ value: 13.927
1659
+ - type: map_at_1000
1660
+ value: 15.226999999999999
1661
+ - type: map_at_3
1662
+ value: 8.525
1663
+ - type: map_at_5
1664
+ value: 9.767000000000001
1665
+ - type: mrr_at_1
1666
+ value: 43.344
1667
+ - type: mrr_at_10
1668
+ value: 51.646
1669
+ - type: mrr_at_100
1670
+ value: 52.212
1671
+ - type: mrr_at_1000
1672
+ value: 52.263999999999996
1673
+ - type: mrr_at_3
1674
+ value: 50.052
1675
+ - type: mrr_at_5
1676
+ value: 51.166
1677
+ - type: ndcg_at_1
1678
+ value: 41.949999999999996
1679
+ - type: ndcg_at_10
1680
+ value: 30.552
1681
+ - type: ndcg_at_100
1682
+ value: 28.409000000000002
1683
+ - type: ndcg_at_1000
1684
+ value: 37.328
1685
+ - type: ndcg_at_3
1686
+ value: 37.114000000000004
1687
+ - type: ndcg_at_5
1688
+ value: 34.117999999999995
1689
+ - type: precision_at_1
1690
+ value: 43.344
1691
+ - type: precision_at_10
1692
+ value: 22.198
1693
+ - type: precision_at_100
1694
+ value: 7.234999999999999
1695
+ - type: precision_at_1000
1696
+ value: 2.013
1697
+ - type: precision_at_3
1698
+ value: 34.675
1699
+ - type: precision_at_5
1700
+ value: 29.04
1701
+ - type: recall_at_1
1702
+ value: 5.157
1703
+ - type: recall_at_10
1704
+ value: 13.999
1705
+ - type: recall_at_100
1706
+ value: 28.796
1707
+ - type: recall_at_1000
1708
+ value: 60.84
1709
+ - type: recall_at_3
1710
+ value: 9.603
1711
+ - type: recall_at_5
1712
+ value: 11.638
1713
+ - task:
1714
+ type: Retrieval
1715
+ dataset:
1716
+ type: nq
1717
+ name: MTEB NQ
1718
+ config: default
1719
+ split: test
1720
+ revision: None
1721
+ metrics:
1722
+ - type: map_at_1
1723
+ value: 33.024
1724
+ - type: map_at_10
1725
+ value: 47.229
1726
+ - type: map_at_100
1727
+ value: 48.195
1728
+ - type: map_at_1000
1729
+ value: 48.229
1730
+ - type: map_at_3
1731
+ value: 43.356
1732
+ - type: map_at_5
1733
+ value: 45.857
1734
+ - type: mrr_at_1
1735
+ value: 36.848
1736
+ - type: mrr_at_10
1737
+ value: 49.801
1738
+ - type: mrr_at_100
1739
+ value: 50.532999999999994
1740
+ - type: mrr_at_1000
1741
+ value: 50.556
1742
+ - type: mrr_at_3
1743
+ value: 46.605999999999995
1744
+ - type: mrr_at_5
1745
+ value: 48.735
1746
+ - type: ndcg_at_1
1747
+ value: 36.848
1748
+ - type: ndcg_at_10
1749
+ value: 54.202
1750
+ - type: ndcg_at_100
1751
+ value: 58.436
1752
+ - type: ndcg_at_1000
1753
+ value: 59.252
1754
+ - type: ndcg_at_3
1755
+ value: 47.082
1756
+ - type: ndcg_at_5
1757
+ value: 51.254
1758
+ - type: precision_at_1
1759
+ value: 36.848
1760
+ - type: precision_at_10
1761
+ value: 8.636000000000001
1762
+ - type: precision_at_100
1763
+ value: 1.105
1764
+ - type: precision_at_1000
1765
+ value: 0.11800000000000001
1766
+ - type: precision_at_3
1767
+ value: 21.08
1768
+ - type: precision_at_5
1769
+ value: 15.07
1770
+ - type: recall_at_1
1771
+ value: 33.024
1772
+ - type: recall_at_10
1773
+ value: 72.699
1774
+ - type: recall_at_100
1775
+ value: 91.387
1776
+ - type: recall_at_1000
1777
+ value: 97.482
1778
+ - type: recall_at_3
1779
+ value: 54.604
1780
+ - type: recall_at_5
1781
+ value: 64.224
1782
+ - task:
1783
+ type: Retrieval
1784
+ dataset:
1785
+ type: quora
1786
+ name: MTEB QuoraRetrieval
1787
+ config: default
1788
+ split: test
1789
+ revision: None
1790
+ metrics:
1791
+ - type: map_at_1
1792
+ value: 69.742
1793
+ - type: map_at_10
1794
+ value: 83.43
1795
+ - type: map_at_100
1796
+ value: 84.09400000000001
1797
+ - type: map_at_1000
1798
+ value: 84.113
1799
+ - type: map_at_3
1800
+ value: 80.464
1801
+ - type: map_at_5
1802
+ value: 82.356
1803
+ - type: mrr_at_1
1804
+ value: 80.31
1805
+ - type: mrr_at_10
1806
+ value: 86.629
1807
+ - type: mrr_at_100
1808
+ value: 86.753
1809
+ - type: mrr_at_1000
1810
+ value: 86.75399999999999
1811
+ - type: mrr_at_3
1812
+ value: 85.59
1813
+ - type: mrr_at_5
1814
+ value: 86.346
1815
+ - type: ndcg_at_1
1816
+ value: 80.28999999999999
1817
+ - type: ndcg_at_10
1818
+ value: 87.323
1819
+ - type: ndcg_at_100
1820
+ value: 88.682
1821
+ - type: ndcg_at_1000
1822
+ value: 88.812
1823
+ - type: ndcg_at_3
1824
+ value: 84.373
1825
+ - type: ndcg_at_5
1826
+ value: 86.065
1827
+ - type: precision_at_1
1828
+ value: 80.28999999999999
1829
+ - type: precision_at_10
1830
+ value: 13.239999999999998
1831
+ - type: precision_at_100
1832
+ value: 1.521
1833
+ - type: precision_at_1000
1834
+ value: 0.156
1835
+ - type: precision_at_3
1836
+ value: 36.827
1837
+ - type: precision_at_5
1838
+ value: 24.272
1839
+ - type: recall_at_1
1840
+ value: 69.742
1841
+ - type: recall_at_10
1842
+ value: 94.645
1843
+ - type: recall_at_100
1844
+ value: 99.375
1845
+ - type: recall_at_1000
1846
+ value: 99.97200000000001
1847
+ - type: recall_at_3
1848
+ value: 86.18400000000001
1849
+ - type: recall_at_5
1850
+ value: 90.958
1851
+ - task:
1852
+ type: Clustering
1853
+ dataset:
1854
+ type: mteb/reddit-clustering
1855
+ name: MTEB RedditClustering
1856
+ config: default
1857
+ split: test
1858
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1859
+ metrics:
1860
+ - type: v_measure
1861
+ value: 50.52987829115787
1862
+ - task:
1863
+ type: Clustering
1864
+ dataset:
1865
+ type: mteb/reddit-clustering-p2p
1866
+ name: MTEB RedditClusteringP2P
1867
+ config: default
1868
+ split: test
1869
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1870
+ metrics:
1871
+ - type: v_measure
1872
+ value: 56.73289360025561
1873
+ - task:
1874
+ type: Retrieval
1875
+ dataset:
1876
+ type: scidocs
1877
+ name: MTEB SCIDOCS
1878
+ config: default
1879
+ split: test
1880
+ revision: None
1881
+ metrics:
1882
+ - type: map_at_1
1883
+ value: 4.473
1884
+ - type: map_at_10
1885
+ value: 10.953
1886
+ - type: map_at_100
1887
+ value: 12.842
1888
+ - type: map_at_1000
1889
+ value: 13.122
1890
+ - type: map_at_3
1891
+ value: 7.863
1892
+ - type: map_at_5
1893
+ value: 9.376
1894
+ - type: mrr_at_1
1895
+ value: 22.0
1896
+ - type: mrr_at_10
1897
+ value: 32.639
1898
+ - type: mrr_at_100
1899
+ value: 33.658
1900
+ - type: mrr_at_1000
1901
+ value: 33.727000000000004
1902
+ - type: mrr_at_3
1903
+ value: 29.232999999999997
1904
+ - type: mrr_at_5
1905
+ value: 31.373
1906
+ - type: ndcg_at_1
1907
+ value: 22.0
1908
+ - type: ndcg_at_10
1909
+ value: 18.736
1910
+ - type: ndcg_at_100
1911
+ value: 26.209
1912
+ - type: ndcg_at_1000
1913
+ value: 31.427
1914
+ - type: ndcg_at_3
1915
+ value: 17.740000000000002
1916
+ - type: ndcg_at_5
1917
+ value: 15.625
1918
+ - type: precision_at_1
1919
+ value: 22.0
1920
+ - type: precision_at_10
1921
+ value: 9.700000000000001
1922
+ - type: precision_at_100
1923
+ value: 2.052
1924
+ - type: precision_at_1000
1925
+ value: 0.331
1926
+ - type: precision_at_3
1927
+ value: 16.533
1928
+ - type: precision_at_5
1929
+ value: 13.74
1930
+ - type: recall_at_1
1931
+ value: 4.473
1932
+ - type: recall_at_10
1933
+ value: 19.627
1934
+ - type: recall_at_100
1935
+ value: 41.63
1936
+ - type: recall_at_1000
1937
+ value: 67.173
1938
+ - type: recall_at_3
1939
+ value: 10.067
1940
+ - type: recall_at_5
1941
+ value: 13.927
1942
+ - task:
1943
+ type: STS
1944
+ dataset:
1945
+ type: mteb/sickr-sts
1946
+ name: MTEB SICK-R
1947
+ config: default
1948
+ split: test
1949
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1950
+ metrics:
1951
+ - type: cos_sim_pearson
1952
+ value: 83.27314719076216
1953
+ - type: cos_sim_spearman
1954
+ value: 76.39295628838427
1955
+ - type: euclidean_pearson
1956
+ value: 80.38849931283136
1957
+ - type: euclidean_spearman
1958
+ value: 76.39295685543406
1959
+ - type: manhattan_pearson
1960
+ value: 80.28382869912794
1961
+ - type: manhattan_spearman
1962
+ value: 76.28362123227473
1963
+ - task:
1964
+ type: STS
1965
+ dataset:
1966
+ type: mteb/sts12-sts
1967
+ name: MTEB STS12
1968
+ config: default
1969
+ split: test
1970
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1971
+ metrics:
1972
+ - type: cos_sim_pearson
1973
+ value: 82.36858074786585
1974
+ - type: cos_sim_spearman
1975
+ value: 72.81528838052759
1976
+ - type: euclidean_pearson
1977
+ value: 78.83576324502302
1978
+ - type: euclidean_spearman
1979
+ value: 72.8152880167174
1980
+ - type: manhattan_pearson
1981
+ value: 78.81284819385367
1982
+ - type: manhattan_spearman
1983
+ value: 72.76091465928633
1984
+ - task:
1985
+ type: STS
1986
+ dataset:
1987
+ type: mteb/sts13-sts
1988
+ name: MTEB STS13
1989
+ config: default
1990
+ split: test
1991
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1992
+ metrics:
1993
+ - type: cos_sim_pearson
1994
+ value: 81.08132718998489
1995
+ - type: cos_sim_spearman
1996
+ value: 82.00988939015869
1997
+ - type: euclidean_pearson
1998
+ value: 81.02243847451692
1999
+ - type: euclidean_spearman
2000
+ value: 82.00992010206836
2001
+ - type: manhattan_pearson
2002
+ value: 80.97749306075134
2003
+ - type: manhattan_spearman
2004
+ value: 81.97800195109437
2005
+ - task:
2006
+ type: STS
2007
+ dataset:
2008
+ type: mteb/sts14-sts
2009
+ name: MTEB STS14
2010
+ config: default
2011
+ split: test
2012
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2013
+ metrics:
2014
+ - type: cos_sim_pearson
2015
+ value: 80.83442047735284
2016
+ - type: cos_sim_spearman
2017
+ value: 77.50930325127395
2018
+ - type: euclidean_pearson
2019
+ value: 79.34941050260747
2020
+ - type: euclidean_spearman
2021
+ value: 77.50930324686452
2022
+ - type: manhattan_pearson
2023
+ value: 79.28081079289419
2024
+ - type: manhattan_spearman
2025
+ value: 77.42311420628891
2026
+ - task:
2027
+ type: STS
2028
+ dataset:
2029
+ type: mteb/sts15-sts
2030
+ name: MTEB STS15
2031
+ config: default
2032
+ split: test
2033
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2034
+ metrics:
2035
+ - type: cos_sim_pearson
2036
+ value: 85.70132781546333
2037
+ - type: cos_sim_spearman
2038
+ value: 86.58415907086527
2039
+ - type: euclidean_pearson
2040
+ value: 85.63892869817083
2041
+ - type: euclidean_spearman
2042
+ value: 86.58415907086527
2043
+ - type: manhattan_pearson
2044
+ value: 85.56054168116064
2045
+ - type: manhattan_spearman
2046
+ value: 86.50292824173809
2047
+ - task:
2048
+ type: STS
2049
+ dataset:
2050
+ type: mteb/sts16-sts
2051
+ name: MTEB STS16
2052
+ config: default
2053
+ split: test
2054
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2055
+ metrics:
2056
+ - type: cos_sim_pearson
2057
+ value: 81.48780971731246
2058
+ - type: cos_sim_spearman
2059
+ value: 82.79818891852887
2060
+ - type: euclidean_pearson
2061
+ value: 81.93990926192305
2062
+ - type: euclidean_spearman
2063
+ value: 82.79818891852887
2064
+ - type: manhattan_pearson
2065
+ value: 81.97538189750966
2066
+ - type: manhattan_spearman
2067
+ value: 82.88761825524075
2068
+ - task:
2069
+ type: STS
2070
+ dataset:
2071
+ type: mteb/sts17-crosslingual-sts
2072
+ name: MTEB STS17 (en-en)
2073
+ config: en-en
2074
+ split: test
2075
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2076
+ metrics:
2077
+ - type: cos_sim_pearson
2078
+ value: 88.4989925729811
2079
+ - type: cos_sim_spearman
2080
+ value: 88.47370962620529
2081
+ - type: euclidean_pearson
2082
+ value: 88.2312980339956
2083
+ - type: euclidean_spearman
2084
+ value: 88.47370962620529
2085
+ - type: manhattan_pearson
2086
+ value: 88.15570940509707
2087
+ - type: manhattan_spearman
2088
+ value: 88.36900000569275
2089
+ - task:
2090
+ type: STS
2091
+ dataset:
2092
+ type: mteb/sts22-crosslingual-sts
2093
+ name: MTEB STS22 (en)
2094
+ config: en
2095
+ split: test
2096
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2097
+ metrics:
2098
+ - type: cos_sim_pearson
2099
+ value: 63.90740805015967
2100
+ - type: cos_sim_spearman
2101
+ value: 63.968359064784444
2102
+ - type: euclidean_pearson
2103
+ value: 64.67928113832794
2104
+ - type: euclidean_spearman
2105
+ value: 63.968359064784444
2106
+ - type: manhattan_pearson
2107
+ value: 63.92597430517486
2108
+ - type: manhattan_spearman
2109
+ value: 63.31372007361158
2110
+ - task:
2111
+ type: STS
2112
+ dataset:
2113
+ type: mteb/stsbenchmark-sts
2114
+ name: MTEB STSBenchmark
2115
+ config: default
2116
+ split: test
2117
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2118
+ metrics:
2119
+ - type: cos_sim_pearson
2120
+ value: 82.56902991447632
2121
+ - type: cos_sim_spearman
2122
+ value: 83.16262853325924
2123
+ - type: euclidean_pearson
2124
+ value: 83.47693312869555
2125
+ - type: euclidean_spearman
2126
+ value: 83.16266829656969
2127
+ - type: manhattan_pearson
2128
+ value: 83.51067558632968
2129
+ - type: manhattan_spearman
2130
+ value: 83.25136388306153
2131
+ - task:
2132
+ type: Reranking
2133
+ dataset:
2134
+ type: mteb/scidocs-reranking
2135
+ name: MTEB SciDocsRR
2136
+ config: default
2137
+ split: test
2138
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2139
+ metrics:
2140
+ - type: map
2141
+ value: 80.1518040851234
2142
+ - type: mrr
2143
+ value: 94.49083052024228
2144
+ - task:
2145
+ type: Retrieval
2146
+ dataset:
2147
+ type: scifact
2148
+ name: MTEB SciFact
2149
+ config: default
2150
+ split: test
2151
+ revision: None
2152
+ metrics:
2153
+ - type: map_at_1
2154
+ value: 50.661
2155
+ - type: map_at_10
2156
+ value: 59.816
2157
+ - type: map_at_100
2158
+ value: 60.412
2159
+ - type: map_at_1000
2160
+ value: 60.446999999999996
2161
+ - type: map_at_3
2162
+ value: 56.567
2163
+ - type: map_at_5
2164
+ value: 58.45
2165
+ - type: mrr_at_1
2166
+ value: 53.667
2167
+ - type: mrr_at_10
2168
+ value: 61.342
2169
+ - type: mrr_at_100
2170
+ value: 61.8
2171
+ - type: mrr_at_1000
2172
+ value: 61.836
2173
+ - type: mrr_at_3
2174
+ value: 59.111000000000004
2175
+ - type: mrr_at_5
2176
+ value: 60.411
2177
+ - type: ndcg_at_1
2178
+ value: 53.667
2179
+ - type: ndcg_at_10
2180
+ value: 64.488
2181
+ - type: ndcg_at_100
2182
+ value: 67.291
2183
+ - type: ndcg_at_1000
2184
+ value: 68.338
2185
+ - type: ndcg_at_3
2186
+ value: 59.101000000000006
2187
+ - type: ndcg_at_5
2188
+ value: 61.812999999999995
2189
+ - type: precision_at_1
2190
+ value: 53.667
2191
+ - type: precision_at_10
2192
+ value: 8.799999999999999
2193
+ - type: precision_at_100
2194
+ value: 1.0330000000000001
2195
+ - type: precision_at_1000
2196
+ value: 0.11199999999999999
2197
+ - type: precision_at_3
2198
+ value: 23.0
2199
+ - type: precision_at_5
2200
+ value: 15.6
2201
+ - type: recall_at_1
2202
+ value: 50.661
2203
+ - type: recall_at_10
2204
+ value: 77.422
2205
+ - type: recall_at_100
2206
+ value: 90.667
2207
+ - type: recall_at_1000
2208
+ value: 99.0
2209
+ - type: recall_at_3
2210
+ value: 63.144
2211
+ - type: recall_at_5
2212
+ value: 69.817
2213
+ - task:
2214
+ type: PairClassification
2215
+ dataset:
2216
+ type: mteb/sprintduplicatequestions-pairclassification
2217
+ name: MTEB SprintDuplicateQuestions
2218
+ config: default
2219
+ split: test
2220
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2221
+ metrics:
2222
+ - type: cos_sim_accuracy
2223
+ value: 99.81287128712871
2224
+ - type: cos_sim_ap
2225
+ value: 94.91998708151321
2226
+ - type: cos_sim_f1
2227
+ value: 90.36206017338093
2228
+ - type: cos_sim_precision
2229
+ value: 92.19562955254943
2230
+ - type: cos_sim_recall
2231
+ value: 88.6
2232
+ - type: dot_accuracy
2233
+ value: 99.81287128712871
2234
+ - type: dot_ap
2235
+ value: 94.91998708151321
2236
+ - type: dot_f1
2237
+ value: 90.36206017338093
2238
+ - type: dot_precision
2239
+ value: 92.19562955254943
2240
+ - type: dot_recall
2241
+ value: 88.6
2242
+ - type: euclidean_accuracy
2243
+ value: 99.81287128712871
2244
+ - type: euclidean_ap
2245
+ value: 94.9199944407842
2246
+ - type: euclidean_f1
2247
+ value: 90.36206017338093
2248
+ - type: euclidean_precision
2249
+ value: 92.19562955254943
2250
+ - type: euclidean_recall
2251
+ value: 88.6
2252
+ - type: manhattan_accuracy
2253
+ value: 99.8108910891089
2254
+ - type: manhattan_ap
2255
+ value: 94.83783896670839
2256
+ - type: manhattan_f1
2257
+ value: 90.27989821882952
2258
+ - type: manhattan_precision
2259
+ value: 91.91709844559585
2260
+ - type: manhattan_recall
2261
+ value: 88.7
2262
+ - type: max_accuracy
2263
+ value: 99.81287128712871
2264
+ - type: max_ap
2265
+ value: 94.9199944407842
2266
+ - type: max_f1
2267
+ value: 90.36206017338093
2268
+ - task:
2269
+ type: Clustering
2270
+ dataset:
2271
+ type: mteb/stackexchange-clustering
2272
+ name: MTEB StackExchangeClustering
2273
+ config: default
2274
+ split: test
2275
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2276
+ metrics:
2277
+ - type: v_measure
2278
+ value: 56.165546412944714
2279
+ - task:
2280
+ type: Clustering
2281
+ dataset:
2282
+ type: mteb/stackexchange-clustering-p2p
2283
+ name: MTEB StackExchangeClusteringP2P
2284
+ config: default
2285
+ split: test
2286
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2287
+ metrics:
2288
+ - type: v_measure
2289
+ value: 34.19894321136813
2290
+ - task:
2291
+ type: Reranking
2292
+ dataset:
2293
+ type: mteb/stackoverflowdupquestions-reranking
2294
+ name: MTEB StackOverflowDupQuestions
2295
+ config: default
2296
+ split: test
2297
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2298
+ metrics:
2299
+ - type: map
2300
+ value: 50.02944308369115
2301
+ - type: mrr
2302
+ value: 50.63055714710127
2303
+ - task:
2304
+ type: Summarization
2305
+ dataset:
2306
+ type: mteb/summeval
2307
+ name: MTEB SummEval
2308
+ config: default
2309
+ split: test
2310
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2311
+ metrics:
2312
+ - type: cos_sim_pearson
2313
+ value: 31.3377433394579
2314
+ - type: cos_sim_spearman
2315
+ value: 30.877807383527983
2316
+ - type: dot_pearson
2317
+ value: 31.337752376327405
2318
+ - type: dot_spearman
2319
+ value: 30.877807383527983
2320
+ - task:
2321
+ type: Retrieval
2322
+ dataset:
2323
+ type: trec-covid
2324
+ name: MTEB TRECCOVID
2325
+ config: default
2326
+ split: test
2327
+ revision: None
2328
+ metrics:
2329
+ - type: map_at_1
2330
+ value: 0.20500000000000002
2331
+ - type: map_at_10
2332
+ value: 1.6099999999999999
2333
+ - type: map_at_100
2334
+ value: 8.635
2335
+ - type: map_at_1000
2336
+ value: 20.419999999999998
2337
+ - type: map_at_3
2338
+ value: 0.59
2339
+ - type: map_at_5
2340
+ value: 0.9249999999999999
2341
+ - type: mrr_at_1
2342
+ value: 80.0
2343
+ - type: mrr_at_10
2344
+ value: 88.452
2345
+ - type: mrr_at_100
2346
+ value: 88.452
2347
+ - type: mrr_at_1000
2348
+ value: 88.452
2349
+ - type: mrr_at_3
2350
+ value: 87.667
2351
+ - type: mrr_at_5
2352
+ value: 88.167
2353
+ - type: ndcg_at_1
2354
+ value: 77.0
2355
+ - type: ndcg_at_10
2356
+ value: 67.079
2357
+ - type: ndcg_at_100
2358
+ value: 49.937
2359
+ - type: ndcg_at_1000
2360
+ value: 44.031
2361
+ - type: ndcg_at_3
2362
+ value: 73.123
2363
+ - type: ndcg_at_5
2364
+ value: 70.435
2365
+ - type: precision_at_1
2366
+ value: 80.0
2367
+ - type: precision_at_10
2368
+ value: 70.39999999999999
2369
+ - type: precision_at_100
2370
+ value: 51.25999999999999
2371
+ - type: precision_at_1000
2372
+ value: 19.698
2373
+ - type: precision_at_3
2374
+ value: 78.0
2375
+ - type: precision_at_5
2376
+ value: 75.2
2377
+ - type: recall_at_1
2378
+ value: 0.20500000000000002
2379
+ - type: recall_at_10
2380
+ value: 1.8399999999999999
2381
+ - type: recall_at_100
2382
+ value: 11.971
2383
+ - type: recall_at_1000
2384
+ value: 41.042
2385
+ - type: recall_at_3
2386
+ value: 0.632
2387
+ - type: recall_at_5
2388
+ value: 1.008
2389
+ - task:
2390
+ type: Retrieval
2391
+ dataset:
2392
+ type: webis-touche2020
2393
+ name: MTEB Touche2020
2394
+ config: default
2395
+ split: test
2396
+ revision: None
2397
+ metrics:
2398
+ - type: map_at_1
2399
+ value: 1.183
2400
+ - type: map_at_10
2401
+ value: 9.58
2402
+ - type: map_at_100
2403
+ value: 16.27
2404
+ - type: map_at_1000
2405
+ value: 17.977999999999998
2406
+ - type: map_at_3
2407
+ value: 4.521
2408
+ - type: map_at_5
2409
+ value: 6.567
2410
+ - type: mrr_at_1
2411
+ value: 12.245000000000001
2412
+ - type: mrr_at_10
2413
+ value: 33.486
2414
+ - type: mrr_at_100
2415
+ value: 34.989
2416
+ - type: mrr_at_1000
2417
+ value: 34.989
2418
+ - type: mrr_at_3
2419
+ value: 28.231
2420
+ - type: mrr_at_5
2421
+ value: 31.701
2422
+ - type: ndcg_at_1
2423
+ value: 9.184000000000001
2424
+ - type: ndcg_at_10
2425
+ value: 22.133
2426
+ - type: ndcg_at_100
2427
+ value: 36.882
2428
+ - type: ndcg_at_1000
2429
+ value: 48.487
2430
+ - type: ndcg_at_3
2431
+ value: 18.971
2432
+ - type: ndcg_at_5
2433
+ value: 20.107
2434
+ - type: precision_at_1
2435
+ value: 12.245000000000001
2436
+ - type: precision_at_10
2437
+ value: 21.837
2438
+ - type: precision_at_100
2439
+ value: 8.265
2440
+ - type: precision_at_1000
2441
+ value: 1.606
2442
+ - type: precision_at_3
2443
+ value: 22.448999999999998
2444
+ - type: precision_at_5
2445
+ value: 23.265
2446
+ - type: recall_at_1
2447
+ value: 1.183
2448
+ - type: recall_at_10
2449
+ value: 17.01
2450
+ - type: recall_at_100
2451
+ value: 51.666000000000004
2452
+ - type: recall_at_1000
2453
+ value: 87.56
2454
+ - type: recall_at_3
2455
+ value: 6.0280000000000005
2456
+ - type: recall_at_5
2457
+ value: 9.937999999999999
2458
+ - task:
2459
+ type: Classification
2460
+ dataset:
2461
+ type: mteb/toxic_conversations_50k
2462
+ name: MTEB ToxicConversationsClassification
2463
+ config: default
2464
+ split: test
2465
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2466
+ metrics:
2467
+ - type: accuracy
2468
+ value: 70.6812
2469
+ - type: ap
2470
+ value: 13.776718216594006
2471
+ - type: f1
2472
+ value: 54.14269849375851
2473
+ - task:
2474
+ type: Classification
2475
+ dataset:
2476
+ type: mteb/tweet_sentiment_extraction
2477
+ name: MTEB TweetSentimentExtractionClassification
2478
+ config: default
2479
+ split: test
2480
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2481
+ metrics:
2482
+ - type: accuracy
2483
+ value: 57.3372948500283
2484
+ - type: f1
2485
+ value: 57.39381291375
2486
+ - task:
2487
+ type: Clustering
2488
+ dataset:
2489
+ type: mteb/twentynewsgroups-clustering
2490
+ name: MTEB TwentyNewsgroupsClustering
2491
+ config: default
2492
+ split: test
2493
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2494
+ metrics:
2495
+ - type: v_measure
2496
+ value: 41.49681931876514
2497
+ - task:
2498
+ type: PairClassification
2499
+ dataset:
2500
+ type: mteb/twittersemeval2015-pairclassification
2501
+ name: MTEB TwitterSemEval2015
2502
+ config: default
2503
+ split: test
2504
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2505
+ metrics:
2506
+ - type: cos_sim_accuracy
2507
+ value: 84.65756690707516
2508
+ - type: cos_sim_ap
2509
+ value: 70.06190309300052
2510
+ - type: cos_sim_f1
2511
+ value: 65.49254432311848
2512
+ - type: cos_sim_precision
2513
+ value: 59.00148085466469
2514
+ - type: cos_sim_recall
2515
+ value: 73.58839050131925
2516
+ - type: dot_accuracy
2517
+ value: 84.65756690707516
2518
+ - type: dot_ap
2519
+ value: 70.06187157356817
2520
+ - type: dot_f1
2521
+ value: 65.49254432311848
2522
+ - type: dot_precision
2523
+ value: 59.00148085466469
2524
+ - type: dot_recall
2525
+ value: 73.58839050131925
2526
+ - type: euclidean_accuracy
2527
+ value: 84.65756690707516
2528
+ - type: euclidean_ap
2529
+ value: 70.06190439203068
2530
+ - type: euclidean_f1
2531
+ value: 65.49254432311848
2532
+ - type: euclidean_precision
2533
+ value: 59.00148085466469
2534
+ - type: euclidean_recall
2535
+ value: 73.58839050131925
2536
+ - type: manhattan_accuracy
2537
+ value: 84.58604041246946
2538
+ - type: manhattan_ap
2539
+ value: 69.93103436414437
2540
+ - type: manhattan_f1
2541
+ value: 65.48780487804878
2542
+ - type: manhattan_precision
2543
+ value: 60.8843537414966
2544
+ - type: manhattan_recall
2545
+ value: 70.84432717678101
2546
+ - type: max_accuracy
2547
+ value: 84.65756690707516
2548
+ - type: max_ap
2549
+ value: 70.06190439203068
2550
+ - type: max_f1
2551
+ value: 65.49254432311848
2552
+ - task:
2553
+ type: PairClassification
2554
+ dataset:
2555
+ type: mteb/twitterurlcorpus-pairclassification
2556
+ name: MTEB TwitterURLCorpus
2557
+ config: default
2558
+ split: test
2559
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2560
+ metrics:
2561
+ - type: cos_sim_accuracy
2562
+ value: 88.78410369852912
2563
+ - type: cos_sim_ap
2564
+ value: 85.45825760499459
2565
+ - type: cos_sim_f1
2566
+ value: 77.73455035163849
2567
+ - type: cos_sim_precision
2568
+ value: 75.5966239813737
2569
+ - type: cos_sim_recall
2570
+ value: 79.9969202340622
2571
+ - type: dot_accuracy
2572
+ value: 88.78410369852912
2573
+ - type: dot_ap
2574
+ value: 85.45825790635979
2575
+ - type: dot_f1
2576
+ value: 77.73455035163849
2577
+ - type: dot_precision
2578
+ value: 75.5966239813737
2579
+ - type: dot_recall
2580
+ value: 79.9969202340622
2581
+ - type: euclidean_accuracy
2582
+ value: 88.78410369852912
2583
+ - type: euclidean_ap
2584
+ value: 85.45826341243391
2585
+ - type: euclidean_f1
2586
+ value: 77.73455035163849
2587
+ - type: euclidean_precision
2588
+ value: 75.5966239813737
2589
+ - type: euclidean_recall
2590
+ value: 79.9969202340622
2591
+ - type: manhattan_accuracy
2592
+ value: 88.7026041060271
2593
+ - type: manhattan_ap
2594
+ value: 85.43182830781821
2595
+ - type: manhattan_f1
2596
+ value: 77.61487303506651
2597
+ - type: manhattan_precision
2598
+ value: 76.20955773226477
2599
+ - type: manhattan_recall
2600
+ value: 79.07299045272559
2601
+ - type: max_accuracy
2602
+ value: 88.78410369852912
2603
+ - type: max_ap
2604
+ value: 85.45826341243391
2605
+ - type: max_f1
2606
+ value: 77.73455035163849