File size: 5,717 Bytes
c56d57f
be90834
 
 
 
 
 
 
 
 
c56d57f
 
be90834
 
 
 
 
 
 
 
 
35cdeff
be90834
 
 
 
 
7b3c4a6
be90834
 
 
 
 
 
7b3c4a6
 
be90834
 
7dd7ceb
5348f72
 
 
f6c51ce
 
be90834
 
 
edfa4c0
be90834
 
 
 
 
 
 
1a5e2e2
be90834
7b8a1f9
be90834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85cc185
 
dc9b472
85cc185
 
 
 
 
 
 
 
c508578
 
 
85cc185
 
be90834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af7a711
be90834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddb6b04
 
 
 
12d7211
ddb6b04
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
pipeline_tag: sentence-similarity
tags:
  - finetuner
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
datasets:
  - jinaai/negation-dataset
language: en
license: apache-2.0
---

<br><br>

<p align="center">
<img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>


<p align="center">
<b>The text embedding set trained by Jina AI, <a href="https://github.com/jina-ai/finetuner"><b>Finetuner</b></a> team.</b>
</p>


## Intented Usage & Model Info

`jina-embedding-t-en-v1` is a tiny small language model that has been trained using Jina AI's Linnaeus-Clean dataset.
This dataset consists of 380 million pairs of sentences, which include both query-document pairs.
These pairs were obtained from various domains and were carefully selected through a thorough cleaning process.
The Linnaeus-Full dataset, from which the Linnaeus-Clean dataset is derived, originally contained 1.6 billion sentence pairs.

The model has a range of use cases, including information retrieval, semantic textual similarity, text reranking, and more.

With a tiny small parameter size of just 14 million parameters,
the model enables lightning-fast inference on CPU, while still delivering impressive performance.
Additionally, we provide the following options:

- [`jina-embedding-t-en-v1`](https://huggingface.co/jinaai/jina-embedding-t-en-v1): 14 million parameters **(you are here)**.
- [`jina-embedding-s-en-v1`](https://huggingface.co/jinaai/jina-embedding-s-en-v1): 35 million parameters.
- [`jina-embedding-b-en-v1`](https://huggingface.co/jinaai/jina-embedding-b-en-v1): 110 million parameters.
- [`jina-embedding-l-en-v1`](https://huggingface.co/jinaai/jina-embedding-l-en-v1): 330 million parameters.
- `jina-embedding-1b-en-v1`: 1.2 billion parameters, 10 times bert-base (soon).
- `jina-embedding-6b-en-v1`: 6 billion parameters, 30 times bert-base (soon).

## Data & Parameters

Please checkout our [technical blog](https://arxiv.org/abs/2307.11224).

## Metrics

We compared the model against `all-minilm-l6-v2`/`all-mpnet-base-v2` from sbert and `text-embeddings-ada-002` from OpenAI:

|Name|param    |dimension|
|------------------------------|-----|------|
|all-minilm-l6-v2|23m      |384|
|all-mpnet-base-v2 |110m     |768|
|ada-embedding-002|Unknown/OpenAI API  |1536|
|jina-embedding-t-en-v1|14m      |312|
|jina-embedding-s-en-v1|35m      |512|
|jina-embedding-b-en-v1|110m      |768|
|jina-embedding-l-en-v1|330m      |1024|


|Name|STS12|STS13|STS14|STS15|STS16|STS17|TRECOVID|Quora|SciFact|
|------------------------------|-----|-----|-----|-----|-----|-----|--------|-----|-----|
|all-minilm-l6-v2|0.724|0.806|0.756|0.854|0.79 |0.876|0.473   |0.876|0.645  |
|all-mpnet-base-v2|0.726|0.835|**0.78** |0.857|0.8  |**0.906**|0.513   |0.875|0.656  |
|ada-embedding-002|0.698|0.833|0.761|0.861|**0.86** |0.903|**0.685**   |0.876|**0.726**  |
|jina-embedding-t-en-v1|0.714|0.775|0.723|0.825|0.771|0.863|0.479   |0.841|0.542  |
|jina-embedding-s-en-v1|**0.743**|0.786|0.738|0.837|0.80|0.875|0.523   |0.857|0.524  |
|jina-embedding-b-en-v1|0.735|0.792|0.752|0.851|0.801|0.89|0.546   |0.871|0.586  |
|jina-embedding-l-en-v1|0.739|**0.844**|0.778|**0.863**|0.821|0.896|0.566   |**0.882**|0.608  |

## Inference Speed

We encoded a single sentence "What is the current weather like today?" 10k times on:

1. cpu: MacBook Pro 2020, 2 GHz Quad-Core Intel Core i5
2. gpu: 1 Nvidia 3090

And recorded time spent to demonstrate the embedding speed:

|Name|param    |dimension| time@cpu | time@gpu |
|------------------------------|-----|------|-----|-----|
|jina-embedding-t-en-v1|14m      |312| 5.78s | 2.36s|
|all-minilm-l6-v2|23m      |384| 11.95s | 2.70s |
|jina-embedding-s-en-v1|35m      |512| 17.25s | 2.81s |


## Usage

Use with Jina AI Finetuner

```python
!pip install finetuner
import finetuner

model = finetuner.build_model('jinaai/jina-embedding-t-en-v1')
embeddings = finetuner.encode(
    model=model,
    data=['how is the weather today', 'What is the current weather like today?']
)
print(finetuner.cos_sim(embeddings[0], embeddings[1]))
```

Use with sentence-transformers:

```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

sentences = ['how is the weather today', 'What is the current weather like today?']

model = SentenceTransformer('jinaai/jina-embedding-t-en-v1')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))
```

## Fine-tuning

Please consider [Finetuner](https://github.com/jina-ai/finetuner).

## Plans

1. The development of `jina-embedding-s-en-v2` is currently underway with two main objectives: improving performance and increasing the maximum sequence length.
2. We are currently working on a bilingual embedding model that combines English and X language. The upcoming model will be called `jina-embedding-s/b/l-de-v1`.

## Contact

Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.

## Citation

If you find Jina Embeddings useful in your research, please cite the following paper:

``` latex
@misc{günther2023jina,
      title={Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models}, 
      author={Michael Günther and Louis Milliken and Jonathan Geuter and Georgios Mastrapas and Bo Wang and Han Xiao},
      year={2023},
      eprint={2307.11224},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```