Markus28 commited on
Commit
03d8e7c
·
1 Parent(s): 63832b9

feat: try to fix compilation

Browse files
Files changed (2) hide show
  1. modeling_bert.py +1 -2
  2. patched_padding_bert.py +39 -0
modeling_bert.py CHANGED
@@ -28,9 +28,8 @@ from transformers.models.bert.modeling_bert import (
28
  BaseModelOutputWithPoolingAndCrossAttentions,
29
  BertForPreTrainingOutput,
30
  )
31
-
32
  from flash_attn.bert_padding import (
33
- index_first_axis,
34
  index_first_axis_residual,
35
  pad_input,
36
  unpad_input,
 
28
  BaseModelOutputWithPoolingAndCrossAttentions,
29
  BertForPreTrainingOutput,
30
  )
31
+ from .patched_padding_bert import index_first_axis
32
  from flash_attn.bert_padding import (
 
33
  index_first_axis_residual,
34
  pad_input,
35
  unpad_input,
patched_padding_bert.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Source https://github.com/Dao-AILab/flash-attention/blob/87a1277653fc55cd615f5341255e00c69d5c00a1/flash_attn/bert_padding.py
2
+
3
+ We replace the gather in `IndexFirstAxis.forward` with an indexing operation
4
+ """
5
+ import torch
6
+ from einops import rearrange, repeat
7
+
8
+ class IndexFirstAxis(torch.autograd.Function):
9
+ @staticmethod
10
+ def forward(ctx, input, indices, indexing=False):
11
+ ctx.save_for_backward(indices)
12
+ assert input.ndim >= 2
13
+ ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
14
+ # second_dim = other_shape.numel()
15
+ # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
16
+ # return input[indices]
17
+ #return torch.gather(
18
+ # rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
19
+ #).reshape(-1, *other_shape)
20
+ return input[indices]
21
+
22
+ @staticmethod
23
+ def backward(ctx, grad_output):
24
+ (indices,) = ctx.saved_tensors
25
+ assert grad_output.ndim >= 2
26
+ other_shape = grad_output.shape[1:]
27
+ grad_output = rearrange(grad_output, "b ... -> b (...)")
28
+ grad_input = torch.zeros(
29
+ [ctx.first_axis_dim, grad_output.shape[1]],
30
+ device=grad_output.device,
31
+ dtype=grad_output.dtype,
32
+ )
33
+ # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
34
+ # grad_input[indices] = grad_output
35
+ grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
36
+ return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
37
+
38
+
39
+ index_first_axis = IndexFirstAxis.apply