jimyoung6709
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -13,4 +13,119 @@ Neural MP is a machine learning-based motion planning system for robotic manipul
|
|
13 |
|
14 |
All Neural MP checkpoints, as well as our [training codebase](https://github.com/mihdalal/neuralmotionplanner) are released under an MIT License.
|
15 |
|
16 |
-
For full details, please read
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
All Neural MP checkpoints, as well as our [training codebase](https://github.com/mihdalal/neuralmotionplanner) are released under an MIT License.
|
15 |
|
16 |
+
For full details, please read our paper(coming soon) and see [our project page](https://mihdalal.github.io/neuralmotionplanner/).
|
17 |
+
|
18 |
+
## Model Summary
|
19 |
+
- **Developed by:** The Neural MP team consisting of researchers from Carnegie Mellon University.
|
20 |
+
- **Language(s) (NLP):** en
|
21 |
+
- **License:** MIT
|
22 |
+
- **Pretraining Dataset:** Coming soon
|
23 |
+
- **Repository:** [https://github.com/mihdalal/neuralmotionplanner](https://github.com/mihdalal/neuralmotionplanner)
|
24 |
+
- **Paper:** Coming soon
|
25 |
+
- **Project Page & Videos:** [https://mihdalal.github.io/neuralmotionplanner/](https://mihdalal.github.io/neuralmotionplanner/)
|
26 |
+
|
27 |
+
## Installation
|
28 |
+
|
29 |
+
Please check [here](https://github.com/mihdalal/neural_mp?tab=readme-ov-file#installation-instructions) for detailed instructions
|
30 |
+
|
31 |
+
## Usage
|
32 |
+
|
33 |
+
Neural MP model takes in 3D point cloud and start & goal angles of the Franka robot as input, and predict 7-DoF delta joint actions. We provide a wrapper class [NeuralMP](https://github.com/mihdalal/neural_mp/blob/master/neural_mp/real_utils/neural_motion_planner.py) for inference and deploy our model in the real world.
|
34 |
+
|
35 |
+
Here's an deployment example with the Manimo Franka control library:
|
36 |
+
|
37 |
+
Note: using Manimo is not required, you may use other Franka control libraries by creating a wrapper class which inherits from FrankaRealEnv (check [franka_real_env.py](https://github.com/mihdalal/neural_mp/blob/master/neural_mp/envs/franka_real_env.py))
|
38 |
+
|
39 |
+
```python
|
40 |
+
import argparse
|
41 |
+
import numpy as np
|
42 |
+
|
43 |
+
from neural_mp.envs.franka_real_env import FrankaRealEnvManimo
|
44 |
+
from neural_mp.real_utils.neural_motion_planner import NeuralMP
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
|
48 |
+
parser = argparse.ArgumentParser()
|
49 |
+
parser.add_argument(
|
50 |
+
"--mdl_url",
|
51 |
+
type=str,
|
52 |
+
default="mihdalal/NeuralMP",
|
53 |
+
help="hugging face url to load the neural_mp model",
|
54 |
+
)
|
55 |
+
parser.add_argument(
|
56 |
+
"--cache-name",
|
57 |
+
type=str,
|
58 |
+
default="scene1_single_blcok",
|
59 |
+
help="Specify the scene cache file with pcd and rgb data",
|
60 |
+
)
|
61 |
+
parser.add_argument(
|
62 |
+
"--use-cache",
|
63 |
+
action="store_true",
|
64 |
+
help=("If set, will use pre-stored point clouds"),
|
65 |
+
)
|
66 |
+
parser.add_argument(
|
67 |
+
"--debug-combined-pcd",
|
68 |
+
action="store_true",
|
69 |
+
help=("If set, will show visualization of the combined pcd"),
|
70 |
+
)
|
71 |
+
parser.add_argument(
|
72 |
+
"--denoise-pcd",
|
73 |
+
action="store_true",
|
74 |
+
help=("If set, will apply denoising to the pcds"),
|
75 |
+
)
|
76 |
+
parser.add_argument(
|
77 |
+
"--train-mode", action="store_true", help=("If set, will eval with policy in training mode")
|
78 |
+
)
|
79 |
+
parser.add_argument(
|
80 |
+
"--tto", action="store_true", help=("If set, will apply test time optimization")
|
81 |
+
)
|
82 |
+
parser.add_argument(
|
83 |
+
"--in-hand", action="store_true", help=("If set, will enable in hand mode for eval")
|
84 |
+
)
|
85 |
+
parser.add_argument(
|
86 |
+
"--in-hand-params",
|
87 |
+
nargs="+",
|
88 |
+
type=float,
|
89 |
+
default=[0.1, 0.1, 0.1, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 1.0],
|
90 |
+
help="Specify the bounding box of the in hand object. 10 params in total [size(xyz), pos(xyz), ori(xyzw)] 3+3+4.",
|
91 |
+
)
|
92 |
+
|
93 |
+
args = parser.parse_args()
|
94 |
+
env = FrankaRealEnvManimo()
|
95 |
+
neural_mp = NeuralMP(
|
96 |
+
env=env,
|
97 |
+
model_url=args.mdl_url,
|
98 |
+
train_mode=args.train_mode,
|
99 |
+
in_hand=args.in_hand,
|
100 |
+
in_hand_params=args.in_hand_params,
|
101 |
+
visualize=True,
|
102 |
+
)
|
103 |
+
|
104 |
+
points, colors = neural_mp.get_scene_pcd(
|
105 |
+
use_cache=args.use_cache,
|
106 |
+
cache_name=args.cache_name,
|
107 |
+
debug_combined_pcd=args.debug_combined_pcd,
|
108 |
+
denoise=args.denoise_pcd,
|
109 |
+
)
|
110 |
+
|
111 |
+
# specify start and goal configurations
|
112 |
+
start_config = np.array([-0.538, 0.628, -0.061, -1.750, 0.126, 2.418, 1.610])
|
113 |
+
goal_config = np.array([1.067, 0.847, -0.591, -1.627, 0.623, 2.295, 2.580])
|
114 |
+
|
115 |
+
if args.tto:
|
116 |
+
trajectory = neural_mp.motion_plan_with_tto(
|
117 |
+
start_config=start_config,
|
118 |
+
goal_config=goal_config,
|
119 |
+
points=points,
|
120 |
+
colors=colors,
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
trajectory = neural_mp.motion_plan(
|
124 |
+
start_config=start_config,
|
125 |
+
goal_config=goal_config,
|
126 |
+
points=points,
|
127 |
+
colors=colors,
|
128 |
+
)
|
129 |
+
|
130 |
+
success, joint_error = neural_mp.execute_motion_plan(trajectory, speed=0.2)
|
131 |
+
```
|