File size: 39,372 Bytes
63ea6db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
---
base_model: Snowflake/snowflake-arctic-embed-xs
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2730
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What steps can be taken to mitigate the risks associated with GAI
    systems?
  sentences:
  - 'Action ID: GV-4.3-003

    Suggested Action: Verify information sharing and feedback mechanisms among individuals
    and

    organizations regarding any negative impact from GAI systems.

    GAI Risks: Information Integrity; Data

    Privacy'
  - '48. The definitions of ''equity'' and ''underserved communities'' can be found
    in the Definitions section of this framework as well as in Section 2 of The Executive
    Order On Advancing Racial Equity and Support [for Underserved Communities Through
    the Federal Government. https://www.whitehouse.gov/](https://www.whitehouse.gov)
    briefing-room/presidential-actions/2021/01/20/executive-order-advancing-racial-equity-and-support­
    for-underserved-communities-through-the-federal-government/


    49. Id.'
  - 'Action ID: GV-6.1-001

    Suggested Action: Categorize different types of GAI content with associated third-party
    rights (e.g.,

    copyright, intellectual property, data privacy).

    GAI Risks: Data Privacy; Intellectual

    Property; Value Chain and

    Component Integration'
- source_sentence: What tasks are associated with AI Actor governance and oversight?
  sentences:
  - 'GOVERN 1.1: Legal and regulatory requirements involving AI are understood, managed,
    and documented.: MANAGE 4.2: Measurable activities for continual improvements
    are integrated into AI system updates and include regular

    engagement with interested parties, including relevant AI Actors.

    AI Actor Tasks: Governance and Oversight: AI Actor Tasks: AI Deployment, AI Design,
    AI Development, Affected Individuals and Communities, End-Users, Operation and

    Monitoring, TEVV'
  - "Beyond harms from information exposure (such as extortion or dignitary harm),\
    \ wrong or inappropriate inferences of PII can contribute to downstream or secondary\
    \ harmful impacts. For example, predictive inferences made by GAI models based\
    \ on PII or protected attributes can contribute to adverse decisions, leading\
    \ to representational or allocative harms to individuals or groups (see Harmful\
    \ Bias and Homogenization below).  #### Trustworthy AI Characteristics: Accountable\
    \ and Transparent, Privacy Enhanced, Safe, Secure and Resilient\n\n 2.5. Environmental\
    \ Impacts\n\n Training, maintaining, and operating (running inference on) GAI\
    \ systems are resource-intensive activities, with potentially large energy and\
    \ environmental footprints. Energy and carbon emissions vary based on what is\
    \ being done with the GAI model (i.e., pre-training, fine-tuning, inference),\
    \ the modality of the content, hardware used, and type of task or application.\n\
    \n Current estimates suggest that training a single transformer LLM can emit as\
    \ much carbon as 300 round- trip flights between San Francisco and New York. In\
    \ a study comparing energy consumption and carbon emissions for LLM inference,\
    \ generative tasks (e.g., text summarization) were found to be more energy- and\
    \ carbon-intensive than discriminative or non-generative tasks (e.g., text classification).\
    \ \n\n Methods for creating smaller versions of trained models, such as model\
    \ distillation or compression, could reduce environmental impacts at inference\
    \ time, but training and tuning such models may still contribute to their environmental\
    \ impacts. Currently there is no agreed upon method to estimate environmental\
    \ impacts from GAI. \n\n Trustworthy AI Characteristics: Accountable and Transparent,\
    \ Safe\n\n 2.6. Harmful Bias and Homogenization"
  - "#### • Accessibility and reasonable accommodations\n\n • AI actor credentials\
    \ and qualifications  • Alignment to organizational values\n\n#### • Auditing\
    \ and assessment  • Change-management controls  • Commercial use  • Data provenance\
    \ #### • Data protection  • Data retention  • Consistency in use of defining key\
    \ terms  • Decommissioning  • Discouraging anonymous use  • Education  • Impact\
    \ assessments  • Incident response  • Monitoring  • Opt-outs\n\n#### • Risk-based\
    \ controls  • Risk mapping and measurement  • Science-backed TEVV practices  •\
    \ Secure software development practices  • Stakeholder engagement  • Synthetic\
    \ content detection and labeling tools and techniques\n\n • Whistleblower protections\
    \  • Workforce diversity and interdisciplinary teams\n\n#### Establishing acceptable\
    \ use policies and guidance for the use of GAI in formal human-AI teaming settings\
    \ as well as different levels of human-AI configurations can help to decrease\
    \ risks arising from misuse, abuse, inappropriate repurpose, and misalignment\
    \ between systems and users. These practices are just one example of adapting\
    \ existing governance protocols for GAI contexts. \n\n A.1.3. Third-Party Considerations\n\
    \n Organizations may seek to acquire, embed, incorporate, or use open-source or\
    \ proprietary third-party GAI models, systems, or generated data for various applications\
    \ across an enterprise. Use of these GAI tools and inputs has implications for\
    \ all functions of the organization – including but not limited to acquisition,\
    \ human resources, legal, compliance, and IT services – regardless of whether\
    \ they are carried out by employees or third parties. Many of the actions cited\
    \ above are relevant and options for addressing third-party considerations."
- source_sentence: What specific topic is covered in Chapter 3 of the AI Risk Management
    Framework by NIST?
  sentences:
  - "Liang, W. et al. (2023) GPT detectors are biased against non-native English writers.\
    \ arXiv. https://arxiv.org/abs/2304.02819\n\n Luccioni, A. et al. (2023) Power\
    \ Hungry Processing: Watts Driving the Cost of AI Deployment? arXiv. https://arxiv.org/pdf/2311.16863\n\
    \n Mouton, C. et al. (2024) The Operational Risks of AI in Large-Scale Biological\
    \ Attacks. RAND. https://www.rand.org/pubs/research_reports/RRA2977-2.html.\n\n\
    \ Nicoletti, L. et al. (2023) Humans Are Biased. Generative Ai Is Even Worse.\
    \ Bloomberg. https://www.bloomberg.com/graphics/2023-generative-ai-bias/.\n\n\
    \ National Institute of Standards and Technology (2024) Adversarial Machine Learning:\
    \ A Taxonomy and Terminology of Attacks and Mitigations https://csrc.nist.gov/pubs/ai/100/2/e2023/final\n\
    \n National Institute of Standards and Technology (2023) AI Risk Management Framework.\
    \ https://www.nist.gov/itl/ai-risk-management-framework\n\n National Institute\
    \ of Standards and Technology (2023) AI Risk Management Framework, Chapter 3:\
    \ AI Risks and Trustworthiness. https://airc.nist.gov/AI_RMF_Knowledge_Base/AI_RMF/Foundational_Information/3-sec-characteristics\n\
    \n National Institute of Standards and Technology (2023) AI Risk Management Framework,\
    \ Chapter 6: AI RMF Profiles. https://airc.nist.gov/AI_RMF_Knowledge_Base/AI_RMF/Core_And_Profiles/6-sec-profile"
  - "###### WHAT SHOULD BE EXPECTED OF AUTOMATED SYSTEMS\n\n The expectations for\
    \ automated systems are meant to serve as a blueprint for the development of additional\
    \ technical standards and practices that are tailored for particular sectors and\
    \ contexts.\n\n**Equitable.** Consideration should be given to ensuring outcomes\
    \ of the fallback and escalation system are equitable when compared to those of\
    \ the automated system and such that the fallback and escalation system provides\
    \ equitable access to underserved communities.[105]\n\n**Timely. Human consideration\
    \ and fallback are only useful if they are conducted and concluded in a** timely\
    \ manner. The determination of what is timely should be made relative to the specific\
    \ automated system, and the review system should be staffed and regularly assessed\
    \ to ensure it is providing timely consideration and fallback. In time-critical\
    \ systems, this mechanism should be immediately available or, where possible,\
    \ available before the harm occurs. Time-critical systems include, but are not\
    \ limited to, voting-related systems, automated building access and other access\
    \ systems, systems that form a critical component of healthcare, and systems that\
    \ have the ability to withhold wages or otherwise cause immediate financial penalties.\n\
    \n**Effective.** The organizational structure surrounding processes for consideration\
    \ and fallback should be designed so that if the human decision-maker charged\
    \ with reassessing a decision determines that it should be overruled, the new\
    \ decision will be effectively enacted. This includes ensuring that the new decision\
    \ is entered into the automated system throughout its components, any previous\
    \ repercussions from the old decision are also overturned, and safeguards are\
    \ put in place to help ensure that future decisions do not result in the same\
    \ errors.\n\n**Maintained. The human consideration and fallback process and any\
    \ associated automated processes** should be maintained and supported as long\
    \ as the relevant automated system continues to be in use.\n\n**Institute training,\
    \ assessment, and oversight to combat automation bias and ensure any** **human-based\
    \ components of a system are effective.**"
  - "**Institute training, assessment, and oversight to combat automation bias and\
    \ ensure any** **human-based components of a system are effective.**\n\n**Training\
    \ and assessment. Anyone administering, interacting with, or interpreting the\
    \ outputs of an auto­** mated system should receive training in that system, including\
    \ how to properly interpret outputs of a system in light of its intended purpose\
    \ and in how to mitigate the effects of automation bias. The training should reoc­\
    \ cur regularly to ensure it is up to date with the system and to ensure the system\
    \ is used appropriately. Assess­ ment should be ongoing to ensure that the use\
    \ of the system with human involvement provides for appropri­ ate results, i.e.,\
    \ that the involvement of people does not invalidate the system's assessment as\
    \ safe and effective or lead to algorithmic discrimination.\n\n**Oversight. Human-based\
    \ systems have the potential for bias, including automation bias, as well as other**\
    \ concerns that may limit their effectiveness. The results of assessments of the\
    \ efficacy and potential bias of such human-based systems should be overseen by\
    \ governance structures that have the potential to update the operation of the\
    \ human-based system in order to mitigate these effects. **HUMAN ALTERNATIVES,**\
    \ **CONSIDERATION, AND** **FALLBACK**\n\n###### WHAT SHOULD BE EXPECTED OF AUTOMATED\
    \ SYSTEMS\n\n The expectations for automated systems are meant to serve as a blueprint\
    \ for the development of additional technical standards and practices that are\
    \ tailored for particular sectors and contexts.\n\n**Implement additional human\
    \ oversight and safeguards for automated systems related to** **sensitive domains**\n\
    \nAutomated systems used within sensitive domains, including criminal justice,\
    \ employment, education, and health, should meet the expectations laid out throughout\
    \ this framework, especially avoiding capricious, inappropriate, and discriminatory\
    \ impacts of these technologies. Additionally, automated systems used within sensitive\
    \ domains should meet these expectations:"
- source_sentence: What is the primary goal of protecting the public from algorithmic
    discrimination?
  sentences:
  - 'Action ID: MS-1.3-001

    Suggested Action: Define relevant groups of interest (e.g., demographic groups,
    subject matter

    experts, experience with GAI technology) within the context of use as part of

    plans for gathering structured public feedback.

    GAI Risks: Human-AI Configuration; Harmful

    Bias and Homogenization; CBRN

    Information or Capabilities'
  - 'Action ID: GV-6.1-001

    Suggested Action: Categorize different types of GAI content with associated third-party
    rights (e.g.,

    copyright, intellectual property, data privacy).

    GAI Risks: Data Privacy; Intellectual

    Property; Value Chain and

    Component Integration'
  - '**Protect the public from algorithmic discrimination in a proactive and ongoing
    manner**


    **Proactive assessment of equity in design. Those responsible for the development,
    use, or oversight of** automated systems should conduct proactive equity assessments
    in the design phase of the technology research and development or during its acquisition
    to review potential input data, associated historical context, accessibility for
    people with disabilities, and societal goals to identify potential discrimination
    and effects on equity resulting from the introduction of the technology. The assessed
    groups should be as inclusive as possible of the underserved communities mentioned
    in the equity definition: Black, Latino, and Indigenous and Native American persons,
    Asian Americans and Pacific Islanders and other persons of color; members of religious
    minorities; women, girls, and non-binary people; lesbian, gay, bisexual, transgender,
    queer, and intersex (LGBTQI+) persons; older adults; persons with disabilities;
    persons who live in rural areas; and persons otherwise adversely affected by persistent
    poverty or inequality. Assessment could include both qualitative and quantitative
    evaluations of the system. This equity assessment should also be considered a
    core part of the goals of the consultation conducted as part of the safety and
    efficacy review.


    **Representative and robust data. Any data used as part of system development
    or assessment should be** representative of local communities based on the planned
    deployment setting and should be reviewed for bias based on the historical and
    societal context of the data. Such data should be sufficiently robust to identify
    and help to mitigate biases and potential harms.'
- source_sentence: How can human subjects revoke their consent according to the suggested
    action?
  sentences:
  - "Disinformation and misinformation – both of which may be facilitated by GAI –\
    \ may erode public trust in true or valid evidence and information, with downstream\
    \ effects. For example, a synthetic image of a Pentagon blast went viral and briefly\
    \ caused a drop in the stock market. Generative AI models can also assist malicious\
    \ actors in creating compelling imagery and propaganda to support disinformation\
    \ campaigns, which may not be photorealistic, but could enable these campaigns\
    \ to gain more reach and engagement on social media platforms. Additionally, generative\
    \ AI models can assist malicious actors in creating fraudulent content intended\
    \ to impersonate others.\n\n Trustworthy AI Characteristics: Accountable and Transparent,\
    \ Safe, Valid and Reliable, Interpretable and Explainable\n\n 2.9. Information\
    \ Security\n\n Information security for computer systems and data is a mature\
    \ field with widely accepted and standardized practices for offensive and defensive\
    \ cyber capabilities. GAI-based systems present two primary information security\
    \ risks: GAI could potentially discover or enable new cybersecurity risks by lowering\
    \ the barriers for or easing automated exercise of offensive capabilities; simultaneously,\
    \ it expands the available attack surface, as GAI itself is vulnerable to attacks\
    \ like prompt injection or data poisoning. \n\n Offensive cyber capabilities advanced\
    \ by GAI systems may augment cybersecurity attacks such as hacking, malware, and\
    \ phishing. Reports have indicated that LLMs are already able to discover some\
    \ vulnerabilities in systems (hardware, software, data) and write code to exploit\
    \ them. Sophisticated threat actors might further these risks by developing GAI-powered\
    \ security co-pilots for use in several parts of the attack chain, including informing\
    \ attackers on how to proactively evade threat detection and escalate privileges\
    \ after gaining system access.\n\n Information security for GAI models and systems\
    \ also includes maintaining availability of the GAI system and the integrity and\
    \ (when applicable) the confidentiality of the GAI code, training data, and model\
    \ weights. To identify and secure potential attack points in AI systems or specific\
    \ components of the AI"
  - 'Action ID: GV-4.2-003

    Suggested Action: Verify that downstream GAI system impacts (such as the use of
    third-party

    plugins) are included in the impact documentation process.

    GAI Risks: Value Chain and Component

    Integration'
  - 'Action ID: MS-2.2-003

    Suggested Action: Provide human subjects with options to withdraw participation
    or revoke their

    consent for present or future use of their data in GAI applications.

    GAI Risks: Data Privacy; Human-AI

    Configuration; Information

    Integrity'
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-xs
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.6483516483516484
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7362637362637363
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7802197802197802
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8571428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6483516483516484
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2454212454212454
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15604395604395602
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0857142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6483516483516484
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7362637362637363
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7802197802197802
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8571428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7433871430365133
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7083235217163788
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.71581044355863
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.6483516483516484
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.7362637362637363
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.7802197802197802
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.8571428571428571
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.6483516483516484
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2454212454212454
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.15604395604395602
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.0857142857142857
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.6483516483516484
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.7362637362637363
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.7802197802197802
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.8571428571428571
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.7433871430365133
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.7083235217163788
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.71581044355863
      name: Dot Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-xs

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-xs](https://huggingface.co/Snowflake/snowflake-arctic-embed-xs). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-xs](https://huggingface.co/Snowflake/snowflake-arctic-embed-xs) <!-- at revision 742da4f66e1823b5b4dbe6c320a1375a1fd85f9e -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jimmydzj2006/snowflake-arctic-embed-xs_finetuned_aipolicy")
# Run inference
sentences = [
    'How can human subjects revoke their consent according to the suggested action?',
    'Action ID: MS-2.2-003\nSuggested Action: Provide human subjects with options to withdraw participation or revoke their\nconsent for present or future use of their data in GAI applications.\nGAI Risks: Data Privacy; Human-AI\nConfiguration; Information\nIntegrity',
    'Disinformation and misinformation – both of which may be facilitated by GAI – may erode public trust in true or valid evidence and information, with downstream effects. For example, a synthetic image of a Pentagon blast went viral and briefly caused a drop in the stock market. Generative AI models can also assist malicious actors in creating compelling imagery and propaganda to support disinformation campaigns, which may not be photorealistic, but could enable these campaigns to gain more reach and engagement on social media platforms. Additionally, generative AI models can assist malicious actors in creating fraudulent content intended to impersonate others.\n\n Trustworthy AI Characteristics: Accountable and Transparent, Safe, Valid and Reliable, Interpretable and Explainable\n\n 2.9. Information Security\n\n Information security for computer systems and data is a mature field with widely accepted and standardized practices for offensive and defensive cyber capabilities. GAI-based systems present two primary information security risks: GAI could potentially discover or enable new cybersecurity risks by lowering the barriers for or easing automated exercise of offensive capabilities; simultaneously, it expands the available attack surface, as GAI itself is vulnerable to attacks like prompt injection or data poisoning. \n\n Offensive cyber capabilities advanced by GAI systems may augment cybersecurity attacks such as hacking, malware, and phishing. Reports have indicated that LLMs are already able to discover some vulnerabilities in systems (hardware, software, data) and write code to exploit them. Sophisticated threat actors might further these risks by developing GAI-powered security co-pilots for use in several parts of the attack chain, including informing attackers on how to proactively evade threat detection and escalate privileges after gaining system access.\n\n Information security for GAI models and systems also includes maintaining availability of the GAI system and the integrity and (when applicable) the confidentiality of the GAI code, training data, and model weights. To identify and secure potential attack points in AI systems or specific components of the AI',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6484     |
| cosine_accuracy@3   | 0.7363     |
| cosine_accuracy@5   | 0.7802     |
| cosine_accuracy@10  | 0.8571     |
| cosine_precision@1  | 0.6484     |
| cosine_precision@3  | 0.2454     |
| cosine_precision@5  | 0.156      |
| cosine_precision@10 | 0.0857     |
| cosine_recall@1     | 0.6484     |
| cosine_recall@3     | 0.7363     |
| cosine_recall@5     | 0.7802     |
| cosine_recall@10    | 0.8571     |
| cosine_ndcg@10      | 0.7434     |
| cosine_mrr@10       | 0.7083     |
| **cosine_map@100**  | **0.7158** |
| dot_accuracy@1      | 0.6484     |
| dot_accuracy@3      | 0.7363     |
| dot_accuracy@5      | 0.7802     |
| dot_accuracy@10     | 0.8571     |
| dot_precision@1     | 0.6484     |
| dot_precision@3     | 0.2454     |
| dot_precision@5     | 0.156      |
| dot_precision@10    | 0.0857     |
| dot_recall@1        | 0.6484     |
| dot_recall@3        | 0.7363     |
| dot_recall@5        | 0.7802     |
| dot_recall@10       | 0.8571     |
| dot_ndcg@10         | 0.7434     |
| dot_mrr@10          | 0.7083     |
| dot_map@100         | 0.7158     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 2,730 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 8 tokens</li><li>mean: 15.71 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 183.25 tokens</li><li>max: 467 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                      | sentence_1                                                                                                                                                                                                               |
  |:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is the Action ID associated with the suggested action?</code>                        | <code>Action ID: MS-2.12-004<br>Suggested Action: Verify effectiveness of carbon capture or offset programs for GAI training and<br>applications, and address green-washing concerns.<br>GAI Risks: Environmental</code> |
  | <code>What is the suggested action regarding carbon capture or offset programs?</code>          | <code>Action ID: MS-2.12-004<br>Suggested Action: Verify effectiveness of carbon capture or offset programs for GAI training and<br>applications, and address green-washing concerns.<br>GAI Risks: Environmental</code> |
  | <code>What specific concerns should be addressed in relation to carbon capture programs?</code> | <code>Action ID: MS-2.12-004<br>Suggested Action: Verify effectiveness of carbon capture or offset programs for GAI training and<br>applications, and address green-washing concerns.<br>GAI Risks: Environmental</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          284,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | Training Loss | cosine_map@100 |
|:------:|:----:|:-------------:|:--------------:|
| 0.2924 | 50   | -             | 0.5949         |
| 0.5848 | 100  | -             | 0.6455         |
| 0.8772 | 150  | -             | 0.6680         |
| 1.0    | 171  | -             | 0.6721         |
| 1.1696 | 200  | -             | 0.6811         |
| 1.4620 | 250  | -             | 0.6850         |
| 1.7544 | 300  | -             | 0.6959         |
| 2.0    | 342  | -             | 0.7021         |
| 2.0468 | 350  | -             | 0.7008         |
| 2.3392 | 400  | -             | 0.7043         |
| 2.6316 | 450  | -             | 0.7017         |
| 2.9240 | 500  | 5.9671        | 0.7018         |
| 3.0    | 513  | -             | 0.7039         |
| 3.2164 | 550  | -             | 0.7014         |
| 3.5088 | 600  | -             | 0.7039         |
| 3.8012 | 650  | -             | 0.7022         |
| 4.0    | 684  | -             | 0.7058         |
| 4.0936 | 700  | -             | 0.7039         |
| 4.3860 | 750  | -             | 0.7061         |
| 4.6784 | 800  | -             | 0.7030         |
| 4.9708 | 850  | -             | 0.7073         |
| 5.0    | 855  | -             | 0.7073         |
| 5.2632 | 900  | -             | 0.7071         |
| 5.5556 | 950  | -             | 0.7095         |
| 5.8480 | 1000 | 3.5897        | 0.7103         |
| 6.0    | 1026 | -             | 0.7080         |
| 6.1404 | 1050 | -             | 0.7075         |
| 6.4327 | 1100 | -             | 0.7089         |
| 6.7251 | 1150 | -             | 0.7087         |
| 7.0    | 1197 | -             | 0.7102         |
| 7.0175 | 1200 | -             | 0.7101         |
| 7.3099 | 1250 | -             | 0.7134         |
| 7.6023 | 1300 | -             | 0.7130         |
| 7.8947 | 1350 | -             | 0.7133         |
| 8.0    | 1368 | -             | 0.7142         |
| 8.1871 | 1400 | -             | 0.7125         |
| 8.4795 | 1450 | -             | 0.7163         |
| 8.7719 | 1500 | 3.0206        | 0.7124         |
| 9.0    | 1539 | -             | 0.7144         |
| 9.0643 | 1550 | -             | 0.7158         |
| 9.3567 | 1600 | -             | 0.7159         |
| 9.6491 | 1650 | -             | 0.7158         |
| 9.9415 | 1700 | -             | 0.7158         |
| 10.0   | 1710 | -             | 0.7158         |


### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.2.0
- Transformers: 4.44.1
- PyTorch: 2.4.0
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->