jilangdi commited on
Commit
53f8929
·
verified ·
1 Parent(s): 39b96dd

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,568 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:5749
10
+ - loss:CosineSimilarityLoss
11
+ base_model: distilbert/distilbert-base-uncased
12
+ datasets: []
13
+ metrics:
14
+ - pearson_cosine
15
+ - spearman_cosine
16
+ - pearson_manhattan
17
+ - spearman_manhattan
18
+ - pearson_euclidean
19
+ - spearman_euclidean
20
+ - pearson_dot
21
+ - spearman_dot
22
+ - pearson_max
23
+ - spearman_max
24
+ widget:
25
+ - source_sentence: A chef is preparing some food.
26
+ sentences:
27
+ - Five birds stand on the snow.
28
+ - A chef prepared a meal.
29
+ - There is no 'still' that is not relative to some other object.
30
+ - source_sentence: A woman is adding oil on fishes.
31
+ sentences:
32
+ - Large cruise ship floating on the water.
33
+ - It refers to the maximum f-stop (which is defined as the ratio of focal length
34
+ to effective aperture diameter).
35
+ - The woman is cutting potatoes.
36
+ - source_sentence: The player shoots the winning points.
37
+ sentences:
38
+ - Minimum wage laws hurt the least skilled, least productive the most.
39
+ - The basketball player is about to score points for his team.
40
+ - Three televisions, on on the floor, the other two on a box.
41
+ - source_sentence: Stars form in star-formation regions, which itself develop from
42
+ molecular clouds.
43
+ sentences:
44
+ - Although I believe Searle is mistaken, I don't think you have found the problem.
45
+ - It may be possible for a solar system like ours to exist outside of a galaxy.
46
+ - A blond-haired child performing on the trumpet in front of a house while his younger
47
+ brother watches.
48
+ - source_sentence: While Queen may refer to both Queen regent (sovereign) or Queen
49
+ consort, the King has always been the sovereign.
50
+ sentences:
51
+ - At first, I thought this is a bit of a tricky question.
52
+ - A man plays the guitar.
53
+ - There is a very good reason not to refer to the Queen's spouse as "King" - because
54
+ they aren't the King.
55
+ pipeline_tag: sentence-similarity
56
+ co2_eq_emissions:
57
+ emissions: 39.55504012195411
58
+ energy_consumed: 0.07407546705036323
59
+ source: codecarbon
60
+ training_type: fine-tuning
61
+ on_cloud: false
62
+ cpu_model: AMD EPYC 7H12 64-Core Processor
63
+ ram_total_size: 229.14864349365234
64
+ hours_used: 0.147
65
+ hardware_used: 8 x NVIDIA GeForce RTX 3090
66
+ model-index:
67
+ - name: SentenceTransformer based on distilbert/distilbert-base-uncased
68
+ results:
69
+ - task:
70
+ type: semantic-similarity
71
+ name: Semantic Similarity
72
+ dataset:
73
+ name: sts dev
74
+ type: sts-dev
75
+ metrics:
76
+ - type: pearson_cosine
77
+ value: 0.8600140595861905
78
+ name: Pearson Cosine
79
+ - type: spearman_cosine
80
+ value: 0.8598983710598386
81
+ name: Spearman Cosine
82
+ - type: pearson_manhattan
83
+ value: 0.8243680239709271
84
+ name: Pearson Manhattan
85
+ - type: spearman_manhattan
86
+ value: 0.8279844492084353
87
+ name: Spearman Manhattan
88
+ - type: pearson_euclidean
89
+ value: 0.824951390126028
90
+ name: Pearson Euclidean
91
+ - type: spearman_euclidean
92
+ value: 0.8287648794439747
93
+ name: Spearman Euclidean
94
+ - type: pearson_dot
95
+ value: 0.8082965335059282
96
+ name: Pearson Dot
97
+ - type: spearman_dot
98
+ value: 0.8091677829512911
99
+ name: Spearman Dot
100
+ - type: pearson_max
101
+ value: 0.8600140595861905
102
+ name: Pearson Max
103
+ - type: spearman_max
104
+ value: 0.8598983710598386
105
+ name: Spearman Max
106
+ - task:
107
+ type: semantic-similarity
108
+ name: Semantic Similarity
109
+ dataset:
110
+ name: sts test
111
+ type: sts-test
112
+ metrics:
113
+ - type: pearson_cosine
114
+ value: 0.8268457854861329
115
+ name: Pearson Cosine
116
+ - type: spearman_cosine
117
+ value: 0.8228490860497294
118
+ name: Spearman Cosine
119
+ - type: pearson_manhattan
120
+ value: 0.8156507100664523
121
+ name: Pearson Manhattan
122
+ - type: spearman_manhattan
123
+ value: 0.8121071145557491
124
+ name: Spearman Manhattan
125
+ - type: pearson_euclidean
126
+ value: 0.8163157326426538
127
+ name: Pearson Euclidean
128
+ - type: spearman_euclidean
129
+ value: 0.8129552976781299
130
+ name: Spearman Euclidean
131
+ - type: pearson_dot
132
+ value: 0.7410469543934988
133
+ name: Pearson Dot
134
+ - type: spearman_dot
135
+ value: 0.7354483817269781
136
+ name: Spearman Dot
137
+ - type: pearson_max
138
+ value: 0.8268457854861329
139
+ name: Pearson Max
140
+ - type: spearman_max
141
+ value: 0.8228490860497294
142
+ name: Spearman Max
143
+ - type: pearson_cosine
144
+ value: 0.8291194587336435
145
+ name: Pearson Cosine
146
+ - type: spearman_cosine
147
+ value: 0.826073377213203
148
+ name: Spearman Cosine
149
+ - type: pearson_manhattan
150
+ value: 0.8189784822965882
151
+ name: Pearson Manhattan
152
+ - type: spearman_manhattan
153
+ value: 0.8168853954005567
154
+ name: Spearman Manhattan
155
+ - type: pearson_euclidean
156
+ value: 0.8196499152175635
157
+ name: Pearson Euclidean
158
+ - type: spearman_euclidean
159
+ value: 0.8172865511141795
160
+ name: Spearman Euclidean
161
+ - type: pearson_dot
162
+ value: 0.7476019871405575
163
+ name: Pearson Dot
164
+ - type: spearman_dot
165
+ value: 0.7396418058035931
166
+ name: Spearman Dot
167
+ - type: pearson_max
168
+ value: 0.8291194587336435
169
+ name: Pearson Max
170
+ - type: spearman_max
171
+ value: 0.826073377213203
172
+ name: Spearman Max
173
+ ---
174
+
175
+ # SentenceTransformer based on distilbert/distilbert-base-uncased
176
+
177
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
178
+
179
+ ## Model Details
180
+
181
+ ### Model Description
182
+ - **Model Type:** Sentence Transformer
183
+ - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
184
+ - **Maximum Sequence Length:** 512 tokens
185
+ - **Output Dimensionality:** 768 tokens
186
+ - **Similarity Function:** Cosine Similarity
187
+ <!-- - **Training Dataset:** Unknown -->
188
+ <!-- - **Language:** Unknown -->
189
+ <!-- - **License:** Unknown -->
190
+
191
+ ### Model Sources
192
+
193
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
194
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
195
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
196
+
197
+ ### Full Model Architecture
198
+
199
+ ```
200
+ SentenceTransformer(
201
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
202
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
203
+ )
204
+ ```
205
+
206
+ ## Usage
207
+
208
+ ### Direct Usage (Sentence Transformers)
209
+
210
+ First install the Sentence Transformers library:
211
+
212
+ ```bash
213
+ pip install -U sentence-transformers
214
+ ```
215
+
216
+ Then you can load this model and run inference.
217
+ ```python
218
+ from sentence_transformers import SentenceTransformer
219
+
220
+ # Download from the 🤗 Hub
221
+ model = SentenceTransformer("jilangdi/distilbert-base-uncased-sts")
222
+ # Run inference
223
+ sentences = [
224
+ 'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
225
+ 'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
226
+ 'A man plays the guitar.',
227
+ ]
228
+ embeddings = model.encode(sentences)
229
+ print(embeddings.shape)
230
+ # [3, 768]
231
+
232
+ # Get the similarity scores for the embeddings
233
+ similarities = model.similarity(embeddings, embeddings)
234
+ print(similarities.shape)
235
+ # [3, 3]
236
+ ```
237
+
238
+ <!--
239
+ ### Direct Usage (Transformers)
240
+
241
+ <details><summary>Click to see the direct usage in Transformers</summary>
242
+
243
+ </details>
244
+ -->
245
+
246
+ <!--
247
+ ### Downstream Usage (Sentence Transformers)
248
+
249
+ You can finetune this model on your own dataset.
250
+
251
+ <details><summary>Click to expand</summary>
252
+
253
+ </details>
254
+ -->
255
+
256
+ <!--
257
+ ### Out-of-Scope Use
258
+
259
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
260
+ -->
261
+
262
+ ## Evaluation
263
+
264
+ ### Metrics
265
+
266
+ #### Semantic Similarity
267
+ * Dataset: `sts-dev`
268
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
269
+
270
+ | Metric | Value |
271
+ |:--------------------|:-----------|
272
+ | pearson_cosine | 0.86 |
273
+ | **spearman_cosine** | **0.8599** |
274
+ | pearson_manhattan | 0.8244 |
275
+ | spearman_manhattan | 0.828 |
276
+ | pearson_euclidean | 0.825 |
277
+ | spearman_euclidean | 0.8288 |
278
+ | pearson_dot | 0.8083 |
279
+ | spearman_dot | 0.8092 |
280
+ | pearson_max | 0.86 |
281
+ | spearman_max | 0.8599 |
282
+
283
+ #### Semantic Similarity
284
+ * Dataset: `sts-test`
285
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
286
+
287
+ | Metric | Value |
288
+ |:--------------------|:-----------|
289
+ | pearson_cosine | 0.8268 |
290
+ | **spearman_cosine** | **0.8228** |
291
+ | pearson_manhattan | 0.8157 |
292
+ | spearman_manhattan | 0.8121 |
293
+ | pearson_euclidean | 0.8163 |
294
+ | spearman_euclidean | 0.813 |
295
+ | pearson_dot | 0.741 |
296
+ | spearman_dot | 0.7354 |
297
+ | pearson_max | 0.8268 |
298
+ | spearman_max | 0.8228 |
299
+
300
+ #### Semantic Similarity
301
+ * Dataset: `sts-test`
302
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
303
+
304
+ | Metric | Value |
305
+ |:--------------------|:-----------|
306
+ | pearson_cosine | 0.8291 |
307
+ | **spearman_cosine** | **0.8261** |
308
+ | pearson_manhattan | 0.819 |
309
+ | spearman_manhattan | 0.8169 |
310
+ | pearson_euclidean | 0.8196 |
311
+ | spearman_euclidean | 0.8173 |
312
+ | pearson_dot | 0.7476 |
313
+ | spearman_dot | 0.7396 |
314
+ | pearson_max | 0.8291 |
315
+ | spearman_max | 0.8261 |
316
+
317
+ <!--
318
+ ## Bias, Risks and Limitations
319
+
320
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
321
+ -->
322
+
323
+ <!--
324
+ ### Recommendations
325
+
326
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
327
+ -->
328
+
329
+ ## Training Details
330
+
331
+ ### Training Dataset
332
+
333
+ #### Unnamed Dataset
334
+
335
+
336
+ * Size: 5,749 training samples
337
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
338
+ * Approximate statistics based on the first 1000 samples:
339
+ | | sentence1 | sentence2 | score |
340
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
341
+ | type | string | string | float |
342
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
343
+ * Samples:
344
+ | sentence1 | sentence2 | score |
345
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
346
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
347
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
348
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
349
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
350
+ ```json
351
+ {
352
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
353
+ }
354
+ ```
355
+
356
+ ### Evaluation Dataset
357
+
358
+ #### Unnamed Dataset
359
+
360
+
361
+ * Size: 1,500 evaluation samples
362
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
363
+ * Approximate statistics based on the first 1000 samples:
364
+ | | sentence1 | sentence2 | score |
365
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
366
+ | type | string | string | float |
367
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
368
+ * Samples:
369
+ | sentence1 | sentence2 | score |
370
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
371
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
372
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
373
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
374
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
375
+ ```json
376
+ {
377
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
378
+ }
379
+ ```
380
+
381
+ ### Training Hyperparameters
382
+ #### Non-Default Hyperparameters
383
+
384
+ - `eval_strategy`: steps
385
+ - `per_device_train_batch_size`: 16
386
+ - `per_device_eval_batch_size`: 16
387
+ - `num_train_epochs`: 4
388
+ - `warmup_ratio`: 0.1
389
+ - `fp16`: True
390
+
391
+ #### All Hyperparameters
392
+ <details><summary>Click to expand</summary>
393
+
394
+ - `overwrite_output_dir`: False
395
+ - `do_predict`: False
396
+ - `eval_strategy`: steps
397
+ - `prediction_loss_only`: True
398
+ - `per_device_train_batch_size`: 16
399
+ - `per_device_eval_batch_size`: 16
400
+ - `per_gpu_train_batch_size`: None
401
+ - `per_gpu_eval_batch_size`: None
402
+ - `gradient_accumulation_steps`: 1
403
+ - `eval_accumulation_steps`: None
404
+ - `learning_rate`: 5e-05
405
+ - `weight_decay`: 0.0
406
+ - `adam_beta1`: 0.9
407
+ - `adam_beta2`: 0.999
408
+ - `adam_epsilon`: 1e-08
409
+ - `max_grad_norm`: 1.0
410
+ - `num_train_epochs`: 4
411
+ - `max_steps`: -1
412
+ - `lr_scheduler_type`: linear
413
+ - `lr_scheduler_kwargs`: {}
414
+ - `warmup_ratio`: 0.1
415
+ - `warmup_steps`: 0
416
+ - `log_level`: passive
417
+ - `log_level_replica`: warning
418
+ - `log_on_each_node`: True
419
+ - `logging_nan_inf_filter`: True
420
+ - `save_safetensors`: True
421
+ - `save_on_each_node`: False
422
+ - `save_only_model`: False
423
+ - `restore_callback_states_from_checkpoint`: False
424
+ - `no_cuda`: False
425
+ - `use_cpu`: False
426
+ - `use_mps_device`: False
427
+ - `seed`: 42
428
+ - `data_seed`: None
429
+ - `jit_mode_eval`: False
430
+ - `use_ipex`: False
431
+ - `bf16`: False
432
+ - `fp16`: True
433
+ - `fp16_opt_level`: O1
434
+ - `half_precision_backend`: auto
435
+ - `bf16_full_eval`: False
436
+ - `fp16_full_eval`: False
437
+ - `tf32`: None
438
+ - `local_rank`: 0
439
+ - `ddp_backend`: None
440
+ - `tpu_num_cores`: None
441
+ - `tpu_metrics_debug`: False
442
+ - `debug`: []
443
+ - `dataloader_drop_last`: False
444
+ - `dataloader_num_workers`: 0
445
+ - `dataloader_prefetch_factor`: None
446
+ - `past_index`: -1
447
+ - `disable_tqdm`: False
448
+ - `remove_unused_columns`: True
449
+ - `label_names`: None
450
+ - `load_best_model_at_end`: False
451
+ - `ignore_data_skip`: False
452
+ - `fsdp`: []
453
+ - `fsdp_min_num_params`: 0
454
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
455
+ - `fsdp_transformer_layer_cls_to_wrap`: None
456
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
457
+ - `deepspeed`: None
458
+ - `label_smoothing_factor`: 0.0
459
+ - `optim`: adamw_torch
460
+ - `optim_args`: None
461
+ - `adafactor`: False
462
+ - `group_by_length`: False
463
+ - `length_column_name`: length
464
+ - `ddp_find_unused_parameters`: None
465
+ - `ddp_bucket_cap_mb`: None
466
+ - `ddp_broadcast_buffers`: False
467
+ - `dataloader_pin_memory`: True
468
+ - `dataloader_persistent_workers`: False
469
+ - `skip_memory_metrics`: True
470
+ - `use_legacy_prediction_loop`: False
471
+ - `push_to_hub`: False
472
+ - `resume_from_checkpoint`: None
473
+ - `hub_model_id`: None
474
+ - `hub_strategy`: every_save
475
+ - `hub_private_repo`: False
476
+ - `hub_always_push`: False
477
+ - `gradient_checkpointing`: False
478
+ - `gradient_checkpointing_kwargs`: None
479
+ - `include_inputs_for_metrics`: False
480
+ - `eval_do_concat_batches`: True
481
+ - `fp16_backend`: auto
482
+ - `push_to_hub_model_id`: None
483
+ - `push_to_hub_organization`: None
484
+ - `mp_parameters`:
485
+ - `auto_find_batch_size`: False
486
+ - `full_determinism`: False
487
+ - `torchdynamo`: None
488
+ - `ray_scope`: last
489
+ - `ddp_timeout`: 1800
490
+ - `torch_compile`: False
491
+ - `torch_compile_backend`: None
492
+ - `torch_compile_mode`: None
493
+ - `dispatch_batches`: None
494
+ - `split_batches`: None
495
+ - `include_tokens_per_second`: False
496
+ - `include_num_input_tokens_seen`: False
497
+ - `neftune_noise_alpha`: None
498
+ - `optim_target_modules`: None
499
+ - `batch_eval_metrics`: False
500
+ - `batch_sampler`: batch_sampler
501
+ - `multi_dataset_batch_sampler`: proportional
502
+
503
+ </details>
504
+
505
+ ### Training Logs
506
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
507
+ |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
508
+ | 2.2222 | 100 | 0.0423 | 0.0273 | 0.8592 | - |
509
+ | 4.0 | 180 | - | - | - | 0.8228 |
510
+ | 2.2222 | 100 | 0.0049 | 0.0273 | 0.8599 | - |
511
+ | 4.0 | 180 | - | - | - | 0.8261 |
512
+
513
+
514
+ ### Environmental Impact
515
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
516
+ - **Energy Consumed**: 0.074 kWh
517
+ - **Carbon Emitted**: 0.040 kg of CO2
518
+ - **Hours Used**: 0.147 hours
519
+
520
+ ### Training Hardware
521
+ - **On Cloud**: No
522
+ - **GPU Model**: 8 x NVIDIA GeForce RTX 3090
523
+ - **CPU Model**: AMD EPYC 7H12 64-Core Processor
524
+ - **RAM Size**: 229.15 GB
525
+
526
+ ### Framework Versions
527
+ - Python: 3.10.14
528
+ - Sentence Transformers: 3.0.1
529
+ - Transformers: 4.41.2
530
+ - PyTorch: 2.3.1+cu121
531
+ - Accelerate: 0.31.0
532
+ - Datasets: 2.19.2
533
+ - Tokenizers: 0.19.1
534
+
535
+ ## Citation
536
+
537
+ ### BibTeX
538
+
539
+ #### Sentence Transformers
540
+ ```bibtex
541
+ @inproceedings{reimers-2019-sentence-bert,
542
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
543
+ author = "Reimers, Nils and Gurevych, Iryna",
544
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
545
+ month = "11",
546
+ year = "2019",
547
+ publisher = "Association for Computational Linguistics",
548
+ url = "https://arxiv.org/abs/1908.10084",
549
+ }
550
+ ```
551
+
552
+ <!--
553
+ ## Glossary
554
+
555
+ *Clearly define terms in order to be accessible across audiences.*
556
+ -->
557
+
558
+ <!--
559
+ ## Model Card Authors
560
+
561
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
562
+ -->
563
+
564
+ <!--
565
+ ## Model Card Contact
566
+
567
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
568
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:286ff7ec620648fa4ec1d794f1e08b094710a0c5c72a83bb9dbee8727ac757b4
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "DistilBertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff