jilangdi commited on
Commit
1e3950e
·
verified ·
1 Parent(s): 6b6a937

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,521 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:5749
10
+ - loss:CosineSimilarityLoss
11
+ base_model: sentence-transformers/all-mpnet-base-v2
12
+ datasets: []
13
+ metrics:
14
+ - pearson_cosine
15
+ - spearman_cosine
16
+ - pearson_manhattan
17
+ - spearman_manhattan
18
+ - pearson_euclidean
19
+ - spearman_euclidean
20
+ - pearson_dot
21
+ - spearman_dot
22
+ - pearson_max
23
+ - spearman_max
24
+ widget:
25
+ - source_sentence: A chef is preparing some food.
26
+ sentences:
27
+ - Five birds stand on the snow.
28
+ - A chef prepared a meal.
29
+ - There is no 'still' that is not relative to some other object.
30
+ - source_sentence: A woman is adding oil on fishes.
31
+ sentences:
32
+ - Large cruise ship floating on the water.
33
+ - It refers to the maximum f-stop (which is defined as the ratio of focal length
34
+ to effective aperture diameter).
35
+ - The woman is cutting potatoes.
36
+ - source_sentence: The player shoots the winning points.
37
+ sentences:
38
+ - Minimum wage laws hurt the least skilled, least productive the most.
39
+ - The basketball player is about to score points for his team.
40
+ - Three televisions, on on the floor, the other two on a box.
41
+ - source_sentence: Stars form in star-formation regions, which itself develop from
42
+ molecular clouds.
43
+ sentences:
44
+ - Although I believe Searle is mistaken, I don't think you have found the problem.
45
+ - It may be possible for a solar system like ours to exist outside of a galaxy.
46
+ - A blond-haired child performing on the trumpet in front of a house while his younger
47
+ brother watches.
48
+ - source_sentence: While Queen may refer to both Queen regent (sovereign) or Queen
49
+ consort, the King has always been the sovereign.
50
+ sentences:
51
+ - At first, I thought this is a bit of a tricky question.
52
+ - A man plays the guitar.
53
+ - There is a very good reason not to refer to the Queen's spouse as "King" - because
54
+ they aren't the King.
55
+ pipeline_tag: sentence-similarity
56
+ co2_eq_emissions:
57
+ emissions: 93.43541854818658
58
+ energy_consumed: 0.1749782643795525
59
+ source: codecarbon
60
+ training_type: fine-tuning
61
+ on_cloud: false
62
+ cpu_model: AMD EPYC 7H12 64-Core Processor
63
+ ram_total_size: 229.14864349365234
64
+ hours_used: 0.143
65
+ hardware_used: 8 x NVIDIA GeForce RTX 3090
66
+ model-index:
67
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
68
+ results:
69
+ - task:
70
+ type: semantic-similarity
71
+ name: Semantic Similarity
72
+ dataset:
73
+ name: sts mpnet dev
74
+ type: sts-mpnet-dev
75
+ metrics:
76
+ - type: pearson_cosine
77
+ value: 0.9082003751911006
78
+ name: Pearson Cosine
79
+ - type: spearman_cosine
80
+ value: 0.9068573348364105
81
+ name: Spearman Cosine
82
+ - type: pearson_manhattan
83
+ value: 0.8991806648044287
84
+ name: Pearson Manhattan
85
+ - type: spearman_manhattan
86
+ value: 0.905893937799947
87
+ name: Spearman Manhattan
88
+ - type: pearson_euclidean
89
+ value: 0.8998094542860591
90
+ name: Pearson Euclidean
91
+ - type: spearman_euclidean
92
+ value: 0.9068573340303147
93
+ name: Spearman Euclidean
94
+ - type: pearson_dot
95
+ value: 0.9082003757684081
96
+ name: Pearson Dot
97
+ - type: spearman_dot
98
+ value: 0.9068573340303147
99
+ name: Spearman Dot
100
+ - type: pearson_max
101
+ value: 0.9082003757684081
102
+ name: Pearson Max
103
+ - type: spearman_max
104
+ value: 0.9068573348364105
105
+ name: Spearman Max
106
+ - task:
107
+ type: semantic-similarity
108
+ name: Semantic Similarity
109
+ dataset:
110
+ name: sts mpnet test
111
+ type: sts-mpnet-test
112
+ metrics:
113
+ - type: pearson_cosine
114
+ value: 0.8755366875955196
115
+ name: Pearson Cosine
116
+ - type: spearman_cosine
117
+ value: 0.8736528954082163
118
+ name: Spearman Cosine
119
+ - type: pearson_manhattan
120
+ value: 0.8667069486775929
121
+ name: Pearson Manhattan
122
+ - type: spearman_manhattan
123
+ value: 0.872611925172738
124
+ name: Spearman Manhattan
125
+ - type: pearson_euclidean
126
+ value: 0.8673923632809148
127
+ name: Pearson Euclidean
128
+ - type: spearman_euclidean
129
+ value: 0.8736530053628437
130
+ name: Spearman Euclidean
131
+ - type: pearson_dot
132
+ value: 0.8755366834981875
133
+ name: Pearson Dot
134
+ - type: spearman_dot
135
+ value: 0.8736528954082163
136
+ name: Spearman Dot
137
+ - type: pearson_max
138
+ value: 0.8755366875955196
139
+ name: Pearson Max
140
+ - type: spearman_max
141
+ value: 0.8736530053628437
142
+ name: Spearman Max
143
+ ---
144
+
145
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
146
+
147
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
148
+
149
+ ## Model Details
150
+
151
+ ### Model Description
152
+ - **Model Type:** Sentence Transformer
153
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
154
+ - **Maximum Sequence Length:** 384 tokens
155
+ - **Output Dimensionality:** 768 tokens
156
+ - **Similarity Function:** Cosine Similarity
157
+ <!-- - **Training Dataset:** Unknown -->
158
+ <!-- - **Language:** Unknown -->
159
+ <!-- - **License:** Unknown -->
160
+
161
+ ### Model Sources
162
+
163
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
164
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
165
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
166
+
167
+ ### Full Model Architecture
168
+
169
+ ```
170
+ SentenceTransformer(
171
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
172
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
173
+ (2): Normalize()
174
+ )
175
+ ```
176
+
177
+ ## Usage
178
+
179
+ ### Direct Usage (Sentence Transformers)
180
+
181
+ First install the Sentence Transformers library:
182
+
183
+ ```bash
184
+ pip install -U sentence-transformers
185
+ ```
186
+
187
+ Then you can load this model and run inference.
188
+ ```python
189
+ from sentence_transformers import SentenceTransformer
190
+
191
+ # Download from the 🤗 Hub
192
+ model = SentenceTransformer("jilangdi/all-mpnet-base-v2-sts")
193
+ # Run inference
194
+ sentences = [
195
+ 'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
196
+ 'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
197
+ 'A man plays the guitar.',
198
+ ]
199
+ embeddings = model.encode(sentences)
200
+ print(embeddings.shape)
201
+ # [3, 768]
202
+
203
+ # Get the similarity scores for the embeddings
204
+ similarities = model.similarity(embeddings, embeddings)
205
+ print(similarities.shape)
206
+ # [3, 3]
207
+ ```
208
+
209
+ <!--
210
+ ### Direct Usage (Transformers)
211
+
212
+ <details><summary>Click to see the direct usage in Transformers</summary>
213
+
214
+ </details>
215
+ -->
216
+
217
+ <!--
218
+ ### Downstream Usage (Sentence Transformers)
219
+
220
+ You can finetune this model on your own dataset.
221
+
222
+ <details><summary>Click to expand</summary>
223
+
224
+ </details>
225
+ -->
226
+
227
+ <!--
228
+ ### Out-of-Scope Use
229
+
230
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
231
+ -->
232
+
233
+ ## Evaluation
234
+
235
+ ### Metrics
236
+
237
+ #### Semantic Similarity
238
+ * Dataset: `sts-mpnet-dev`
239
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
240
+
241
+ | Metric | Value |
242
+ |:--------------------|:-----------|
243
+ | pearson_cosine | 0.9082 |
244
+ | **spearman_cosine** | **0.9069** |
245
+ | pearson_manhattan | 0.8992 |
246
+ | spearman_manhattan | 0.9059 |
247
+ | pearson_euclidean | 0.8998 |
248
+ | spearman_euclidean | 0.9069 |
249
+ | pearson_dot | 0.9082 |
250
+ | spearman_dot | 0.9069 |
251
+ | pearson_max | 0.9082 |
252
+ | spearman_max | 0.9069 |
253
+
254
+ #### Semantic Similarity
255
+ * Dataset: `sts-mpnet-test`
256
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
257
+
258
+ | Metric | Value |
259
+ |:--------------------|:-----------|
260
+ | pearson_cosine | 0.8755 |
261
+ | **spearman_cosine** | **0.8737** |
262
+ | pearson_manhattan | 0.8667 |
263
+ | spearman_manhattan | 0.8726 |
264
+ | pearson_euclidean | 0.8674 |
265
+ | spearman_euclidean | 0.8737 |
266
+ | pearson_dot | 0.8755 |
267
+ | spearman_dot | 0.8737 |
268
+ | pearson_max | 0.8755 |
269
+ | spearman_max | 0.8737 |
270
+
271
+ <!--
272
+ ## Bias, Risks and Limitations
273
+
274
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
275
+ -->
276
+
277
+ <!--
278
+ ### Recommendations
279
+
280
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
281
+ -->
282
+
283
+ ## Training Details
284
+
285
+ ### Training Dataset
286
+
287
+ #### Unnamed Dataset
288
+
289
+
290
+ * Size: 5,749 training samples
291
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
292
+ * Approximate statistics based on the first 1000 samples:
293
+ | | sentence1 | sentence2 | score |
294
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
295
+ | type | string | string | float |
296
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
297
+ * Samples:
298
+ | sentence1 | sentence2 | score |
299
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
300
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
301
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
302
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
303
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
304
+ ```json
305
+ {
306
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
307
+ }
308
+ ```
309
+
310
+ ### Evaluation Dataset
311
+
312
+ #### Unnamed Dataset
313
+
314
+
315
+ * Size: 1,500 evaluation samples
316
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
317
+ * Approximate statistics based on the first 1000 samples:
318
+ | | sentence1 | sentence2 | score |
319
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
320
+ | type | string | string | float |
321
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
322
+ * Samples:
323
+ | sentence1 | sentence2 | score |
324
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
325
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
326
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
327
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
328
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
329
+ ```json
330
+ {
331
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
332
+ }
333
+ ```
334
+
335
+ ### Training Hyperparameters
336
+ #### Non-Default Hyperparameters
337
+
338
+ - `eval_strategy`: steps
339
+ - `per_device_train_batch_size`: 16
340
+ - `per_device_eval_batch_size`: 16
341
+ - `num_train_epochs`: 5
342
+ - `warmup_ratio`: 0.1
343
+ - `fp16`: True
344
+
345
+ #### All Hyperparameters
346
+ <details><summary>Click to expand</summary>
347
+
348
+ - `overwrite_output_dir`: False
349
+ - `do_predict`: False
350
+ - `eval_strategy`: steps
351
+ - `prediction_loss_only`: True
352
+ - `per_device_train_batch_size`: 16
353
+ - `per_device_eval_batch_size`: 16
354
+ - `per_gpu_train_batch_size`: None
355
+ - `per_gpu_eval_batch_size`: None
356
+ - `gradient_accumulation_steps`: 1
357
+ - `eval_accumulation_steps`: None
358
+ - `learning_rate`: 5e-05
359
+ - `weight_decay`: 0.0
360
+ - `adam_beta1`: 0.9
361
+ - `adam_beta2`: 0.999
362
+ - `adam_epsilon`: 1e-08
363
+ - `max_grad_norm`: 1.0
364
+ - `num_train_epochs`: 5
365
+ - `max_steps`: -1
366
+ - `lr_scheduler_type`: linear
367
+ - `lr_scheduler_kwargs`: {}
368
+ - `warmup_ratio`: 0.1
369
+ - `warmup_steps`: 0
370
+ - `log_level`: passive
371
+ - `log_level_replica`: warning
372
+ - `log_on_each_node`: True
373
+ - `logging_nan_inf_filter`: True
374
+ - `save_safetensors`: True
375
+ - `save_on_each_node`: False
376
+ - `save_only_model`: False
377
+ - `restore_callback_states_from_checkpoint`: False
378
+ - `no_cuda`: False
379
+ - `use_cpu`: False
380
+ - `use_mps_device`: False
381
+ - `seed`: 42
382
+ - `data_seed`: None
383
+ - `jit_mode_eval`: False
384
+ - `use_ipex`: False
385
+ - `bf16`: False
386
+ - `fp16`: True
387
+ - `fp16_opt_level`: O1
388
+ - `half_precision_backend`: auto
389
+ - `bf16_full_eval`: False
390
+ - `fp16_full_eval`: False
391
+ - `tf32`: None
392
+ - `local_rank`: 0
393
+ - `ddp_backend`: None
394
+ - `tpu_num_cores`: None
395
+ - `tpu_metrics_debug`: False
396
+ - `debug`: []
397
+ - `dataloader_drop_last`: False
398
+ - `dataloader_num_workers`: 0
399
+ - `dataloader_prefetch_factor`: None
400
+ - `past_index`: -1
401
+ - `disable_tqdm`: False
402
+ - `remove_unused_columns`: True
403
+ - `label_names`: None
404
+ - `load_best_model_at_end`: False
405
+ - `ignore_data_skip`: False
406
+ - `fsdp`: []
407
+ - `fsdp_min_num_params`: 0
408
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
409
+ - `fsdp_transformer_layer_cls_to_wrap`: None
410
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
411
+ - `deepspeed`: None
412
+ - `label_smoothing_factor`: 0.0
413
+ - `optim`: adamw_torch
414
+ - `optim_args`: None
415
+ - `adafactor`: False
416
+ - `group_by_length`: False
417
+ - `length_column_name`: length
418
+ - `ddp_find_unused_parameters`: None
419
+ - `ddp_bucket_cap_mb`: None
420
+ - `ddp_broadcast_buffers`: False
421
+ - `dataloader_pin_memory`: True
422
+ - `dataloader_persistent_workers`: False
423
+ - `skip_memory_metrics`: True
424
+ - `use_legacy_prediction_loop`: False
425
+ - `push_to_hub`: False
426
+ - `resume_from_checkpoint`: None
427
+ - `hub_model_id`: None
428
+ - `hub_strategy`: every_save
429
+ - `hub_private_repo`: False
430
+ - `hub_always_push`: False
431
+ - `gradient_checkpointing`: False
432
+ - `gradient_checkpointing_kwargs`: None
433
+ - `include_inputs_for_metrics`: False
434
+ - `eval_do_concat_batches`: True
435
+ - `fp16_backend`: auto
436
+ - `push_to_hub_model_id`: None
437
+ - `push_to_hub_organization`: None
438
+ - `mp_parameters`:
439
+ - `auto_find_batch_size`: False
440
+ - `full_determinism`: False
441
+ - `torchdynamo`: None
442
+ - `ray_scope`: last
443
+ - `ddp_timeout`: 1800
444
+ - `torch_compile`: False
445
+ - `torch_compile_backend`: None
446
+ - `torch_compile_mode`: None
447
+ - `dispatch_batches`: None
448
+ - `split_batches`: None
449
+ - `include_tokens_per_second`: False
450
+ - `include_num_input_tokens_seen`: False
451
+ - `neftune_noise_alpha`: None
452
+ - `optim_target_modules`: None
453
+ - `batch_eval_metrics`: False
454
+ - `batch_sampler`: batch_sampler
455
+ - `multi_dataset_batch_sampler`: proportional
456
+
457
+ </details>
458
+
459
+ ### Training Logs
460
+ | Epoch | Step | Training Loss | loss | sts-mpnet-dev_spearman_cosine | sts-mpnet-test_spearman_cosine |
461
+ |:------:|:----:|:-------------:|:------:|:-----------------------------:|:------------------------------:|
462
+ | 2.2222 | 100 | 0.015 | 0.0182 | 0.9033 | - |
463
+ | 4.4444 | 200 | 0.0051 | 0.0181 | 0.9069 | - |
464
+ | 5.0 | 225 | - | - | - | 0.8737 |
465
+
466
+
467
+ ### Environmental Impact
468
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
469
+ - **Energy Consumed**: 0.175 kWh
470
+ - **Carbon Emitted**: 0.093 kg of CO2
471
+ - **Hours Used**: 0.143 hours
472
+
473
+ ### Training Hardware
474
+ - **On Cloud**: No
475
+ - **GPU Model**: 8 x NVIDIA GeForce RTX 3090
476
+ - **CPU Model**: AMD EPYC 7H12 64-Core Processor
477
+ - **RAM Size**: 229.15 GB
478
+
479
+ ### Framework Versions
480
+ - Python: 3.10.14
481
+ - Sentence Transformers: 3.0.1
482
+ - Transformers: 4.41.2
483
+ - PyTorch: 2.3.1+cu121
484
+ - Accelerate: 0.31.0
485
+ - Datasets: 2.19.2
486
+ - Tokenizers: 0.19.1
487
+
488
+ ## Citation
489
+
490
+ ### BibTeX
491
+
492
+ #### Sentence Transformers
493
+ ```bibtex
494
+ @inproceedings{reimers-2019-sentence-bert,
495
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
496
+ author = "Reimers, Nils and Gurevych, Iryna",
497
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
498
+ month = "11",
499
+ year = "2019",
500
+ publisher = "Association for Computational Linguistics",
501
+ url = "https://arxiv.org/abs/1908.10084",
502
+ }
503
+ ```
504
+
505
+ <!--
506
+ ## Glossary
507
+
508
+ *Clearly define terms in order to be accessible across audiences.*
509
+ -->
510
+
511
+ <!--
512
+ ## Model Card Authors
513
+
514
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
515
+ -->
516
+
517
+ <!--
518
+ ## Model Card Contact
519
+
520
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
521
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b8d87ebe7d3036fff0d8e2ef209a47df7777beb8997bf60dc485522d61af62b
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff