garg-aayush
commited on
Commit
·
926a1ef
1
Parent(s):
aa93695
update the handler.py and test_handler file for bugs and error fixes
Browse files- handler.py +221 -146
- test_handler.ipynb +14 -3
handler.py
CHANGED
@@ -1,3 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
from io import BytesIO
|
@@ -15,194 +25,259 @@ import torch
|
|
15 |
import base64
|
16 |
import requests
|
17 |
import logging
|
|
|
18 |
|
19 |
|
20 |
class EndpointHandler:
|
21 |
def __init__(self, path=""):
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# Initialize the Real-ESRGAN model with specified parameters
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
num_out_ch=3,
|
34 |
num_feat=64,
|
35 |
num_block=23,
|
36 |
num_grow_ch=32,
|
37 |
scale=4
|
38 |
),
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'],
|
47 |
aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY'],
|
48 |
)
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
|
52 |
-
# get the logging level from environment variables
|
53 |
-
logging.basicConfig(level=logging.INFO, format='%(levelname)s - %(message)s')
|
54 |
-
self.logger = logging.getLogger(__name__)
|
55 |
|
56 |
|
57 |
def __call__(self, data: Any) -> Dict[str, List[float]]:
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
try:
|
60 |
-
############################################################
|
61 |
-
# get inputs and download image
|
62 |
-
############################################################
|
63 |
-
self.logger.info(">>> 1/7: GETTING INPUTS....")
|
64 |
inputs = data.pop("inputs", data)
|
65 |
-
|
66 |
-
# get outscale
|
67 |
outscale = float(inputs.pop("outscale", 3))
|
68 |
self.logger.info(f"outscale: {outscale}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
try:
|
104 |
-
opencv_image = np.array(image)
|
105 |
-
except Exception as e:
|
106 |
-
self.logger.error(f"Error converting image to opencv format: {e}")
|
107 |
-
return {"out_image": None, "error": f"Failed to convert image to opencv format: {e}"}
|
108 |
-
|
109 |
-
# convert image to BGR
|
110 |
-
if in_mode == "RGB":
|
111 |
-
self.logger.info(f"converting RGB image to BGR")
|
112 |
-
opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_RGB2BGR)
|
113 |
-
elif in_mode == "RGBA":
|
114 |
-
self.logger.info(f"converting RGBA image to BGRA")
|
115 |
-
opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_RGBA2BGRA)
|
116 |
-
elif in_mode == "L":
|
117 |
-
self.logger.info(f"converting grayscale image to BGR")
|
118 |
-
opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_GRAY2RGB)
|
119 |
-
else:
|
120 |
-
self.logger.error(f"Unsupported image mode: {in_mode}")
|
121 |
-
return {"out_image": None, "error": f"Unsupported image mode: {in_mode}"}
|
122 |
-
|
123 |
-
|
124 |
-
############################################################
|
125 |
-
# upscale image
|
126 |
-
############################################################
|
127 |
-
self.logger.info(f">>> 4/7: UPSCALING IMAGE....")
|
128 |
-
|
129 |
-
try:
|
130 |
-
output, _ = self.model.enhance(opencv_image, outscale=outscale)
|
131 |
-
except Exception as e:
|
132 |
-
self.logger.error(f"Error enhancing image: {e}")
|
133 |
-
return {"out_image": None, "error": "Image enhancement failed."}
|
134 |
-
# debug
|
135 |
-
self.logger.info(f"output.shape: {output.shape}")
|
136 |
-
|
137 |
-
|
138 |
-
############################################################
|
139 |
-
# convert to RGB/RGBA format
|
140 |
-
############################################################
|
141 |
-
self.logger.info(f">>> 5/7: CONVERTING IMAGE TO RGB/RGBA FORMAT....")
|
142 |
-
out_shape = output.shape
|
143 |
-
if len(out_shape) == 3:
|
144 |
-
if out_shape[2] == 3:
|
145 |
-
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
146 |
-
elif out_shape[2] == 4:
|
147 |
-
output = cv2.cvtColor(output, cv2.COLOR_BGRA2RGBA)
|
148 |
-
else:
|
149 |
-
output = cv2.cvtColor(output, cv2.COLOR_GRAY2RGB)
|
150 |
-
|
151 |
-
|
152 |
-
############################################################
|
153 |
-
# convert to PIL image
|
154 |
-
############################################################
|
155 |
-
self.logger.info(f">>> 6/7: CONVERTING IMAGE TO PIL....")
|
156 |
-
try:
|
157 |
-
img_byte_arr = BytesIO()
|
158 |
-
output = Image.fromarray(output)
|
159 |
-
except Exception as e:
|
160 |
-
self.logger.error(f"Error converting upscaled image to PIL: {e}")
|
161 |
-
return {"out_image": None, "error": f"Failed to convert upscaled image to PIL: {e}"}
|
162 |
-
|
163 |
-
|
164 |
-
############################################################
|
165 |
-
# upload to s3
|
166 |
-
############################################################
|
167 |
-
self.logger.info(f">>> 7/7: UPLOADING IMAGE TO S3....")
|
168 |
-
try:
|
169 |
-
image_url, key = self.upload_to_s3(output)
|
170 |
-
self.logger.info(f"image uploaded to s3: {image_url}")
|
171 |
-
except Exception as e:
|
172 |
-
self.logger.error(f"Error uploading image to s3: {e}")
|
173 |
-
return {"out_image": None, "error": f"Failed to upload image to s3: {e}"}
|
174 |
-
|
175 |
-
return {"image_url": image_url,
|
176 |
-
"image_key": key,
|
177 |
-
"error": None
|
178 |
-
}
|
179 |
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
except Exception as e:
|
182 |
-
self.logger.error(f"
|
183 |
-
return {"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
-
|
187 |
-
|
|
|
188 |
|
189 |
prefix = str(uuid.uuid4())
|
190 |
# Save the image to an in-memory file
|
191 |
in_mem_file = io.BytesIO()
|
192 |
-
image.save(in_mem_file, 'PNG')
|
193 |
in_mem_file.seek(0)
|
194 |
|
195 |
-
# Upload the image to
|
196 |
key = f"{prefix}.png"
|
197 |
self.s3.upload_fileobj(in_mem_file, Bucket=self.bucket_name, Key=key)
|
198 |
-
image_url = "https://{
|
199 |
|
200 |
-
#
|
201 |
return image_url, key
|
202 |
|
203 |
-
def download_image_url(self, image_url):
|
204 |
-
"
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
response = requests.get(image_url)
|
207 |
image = Image.open(BytesIO(response.content))
|
208 |
return image
|
|
|
1 |
+
"""
|
2 |
+
This module handles the endpoint for image upscaling using the Real-ESRGAN model.
|
3 |
+
|
4 |
+
Required Environment Variables:
|
5 |
+
- TILING_SIZE: The size of the tiles for processing images. Set to 0 to disable tiling.
|
6 |
+
- AWS_ACCESS_KEY_ID: AWS access key for S3 access.
|
7 |
+
- AWS_SECRET_ACCESS_KEY: AWS secret key for S3 access.
|
8 |
+
- BUCKET_NAME: The name of the S3 bucket where images will be uploaded.
|
9 |
+
|
10 |
+
"""
|
11 |
import torch
|
12 |
from PIL import Image
|
13 |
from io import BytesIO
|
|
|
25 |
import base64
|
26 |
import requests
|
27 |
import logging
|
28 |
+
import time
|
29 |
|
30 |
|
31 |
class EndpointHandler:
|
32 |
def __init__(self, path=""):
|
33 |
+
"""
|
34 |
+
Initializes the EndpointHandler class, setting up the Real-ESRGAN model and S3 client.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
path (str): Optional path to the model weights. Defaults to an empty string.
|
38 |
|
39 |
+
This constructor performs the following actions:
|
40 |
+
- Configures logging based on environment variables.
|
41 |
+
- Retrieves the tiling size from environment variables.
|
42 |
+
- Initializes the Real-ESRGAN model with specified parameters, including scale, model path, and architecture.
|
43 |
+
- Sets up the S3 client using AWS credentials from environment variables.
|
44 |
+
- Logs the initialization process and any errors encountered during setup.
|
45 |
+
"""
|
46 |
+
|
47 |
+
# get the logging level from environment variables
|
48 |
+
logging.basicConfig(level=logging.INFO, format='%(levelname)s - %(message)s')
|
49 |
+
self.logger = logging.getLogger(__name__)
|
50 |
+
|
51 |
|
52 |
+
self.tiling_size = int(os.environ["TILING_SIZE"])
|
53 |
+
# self.model_path = f"/repository/weights/Real-ESRGAN-x4plus.pth"
|
54 |
+
self.max_image_size = 1400 * 1400
|
55 |
+
self.model_path = f"/workspace/real-esrgan/weights/Real-ESRGAN-x4plus.pth"
|
56 |
+
|
57 |
+
|
58 |
+
# log model path and tiling size
|
59 |
+
self.logger.info(f"model_path: {self.model_path}")
|
60 |
+
if self.tiling_size == 0: self.logger.info("TILING_SIZE is 0, not using tiling")
|
61 |
+
else: self.logger.info(f"TILING_SIZE is {self.tiling_size}, using tiling")
|
62 |
+
|
63 |
+
|
64 |
# Initialize the Real-ESRGAN model with specified parameters
|
65 |
+
start_time = time.time()
|
66 |
+
self.logger.info(f"initializing model")
|
67 |
+
try:
|
68 |
+
self.model = RealESRGANer(
|
69 |
+
scale=4, # Scale factor for the model
|
70 |
+
# Path to the pre-trained model weights
|
71 |
+
model_path=self.model_path,
|
72 |
+
# Initialize the RRDBNet model architecture with specified parameters
|
73 |
+
model= RRDBNet(num_in_ch=3,
|
74 |
num_out_ch=3,
|
75 |
num_feat=64,
|
76 |
num_block=23,
|
77 |
num_grow_ch=32,
|
78 |
scale=4
|
79 |
),
|
80 |
+
tile=self.tiling_size,
|
81 |
+
tile_pad=0,
|
82 |
+
half=True,
|
83 |
+
)
|
84 |
+
self.logger.info(f"model initialized in {time.time() - start_time} seconds")
|
85 |
+
except Exception as e:
|
86 |
+
self.logger.error(f"Error initializing model: {e}")
|
87 |
+
raise e
|
88 |
|
89 |
+
|
90 |
+
try:
|
91 |
+
# Initialize the S3 client with AWS credentials from environment variables
|
92 |
+
self.s3 = boto3.client('s3',
|
93 |
aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'],
|
94 |
aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY'],
|
95 |
)
|
96 |
+
# Get the S3 bucket name from environment variables
|
97 |
+
self.bucket_name = os.environ["S3_BUCKET_NAME"]
|
98 |
+
except Exception as e:
|
99 |
+
self.logger.error(f"Error initializing S3 client: {e}")
|
100 |
+
raise e
|
101 |
|
|
|
|
|
|
|
102 |
|
103 |
|
104 |
def __call__(self, data: Any) -> Dict[str, List[float]]:
|
105 |
+
"""
|
106 |
+
Processes the input data to upscale an image using the Real-ESRGAN model.
|
107 |
+
|
108 |
+
Args:
|
109 |
+
data (Any): A dictionary containing the input data. It should include:
|
110 |
+
- 'inputs': A dictionary with the following keys:
|
111 |
+
- 'image_url' (str): The URL of the image to be upscaled.
|
112 |
+
- 'outscale' (float): The scaling factor for the upscaling process.
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
Dict[str, List[float]]: A dictionary containing the results of the upscaling process, which includes:
|
116 |
+
- 'image_url' (str | None): The URL of the upscaled image or None if an error occurred.
|
117 |
+
- 'image_key' (str | None): The key for the uploaded image in S3 or None if an error occurred.
|
118 |
+
- 'error' (str | None): An error message if an error occurred, otherwise None.
|
119 |
+
"""
|
120 |
+
|
121 |
+
############################################################
|
122 |
+
# get inputs and download image
|
123 |
+
############################################################
|
124 |
+
self.logger.info(">>> 1/7: GETTING INPUTS....")
|
125 |
try:
|
|
|
|
|
|
|
|
|
126 |
inputs = data.pop("inputs", data)
|
|
|
|
|
127 |
outscale = float(inputs.pop("outscale", 3))
|
128 |
self.logger.info(f"outscale: {outscale}")
|
129 |
+
image_url = inputs["image_url"]
|
130 |
+
except Exception as e:
|
131 |
+
self.logger.error(f"Error getting inputs: {e}")
|
132 |
+
return {"image_url": None, "image_key": None, "error": f"Failed to get inputs: {e}"}
|
133 |
+
|
134 |
+
# download image
|
135 |
+
try:
|
136 |
+
self.logger.info(f"downloading image from URL: {image_url}")
|
137 |
+
image = self.download_image_url(image_url)
|
138 |
+
except Exception as e:
|
139 |
+
self.logger.error(f"Error downloading image from URL: {image_url}. Exception: {e}")
|
140 |
+
return {"image_url": None, "image_key": None, "error": f"Failed to download image: {e}"}
|
141 |
+
|
142 |
+
|
143 |
+
############################################################
|
144 |
+
# run assertions
|
145 |
+
############################################################
|
146 |
+
self.logger.info(">>> 2/7: RUNNING ASSERTIONS ON IMAGE....")
|
147 |
+
|
148 |
+
# get image size and mode
|
149 |
+
in_size, in_mode = image.size, image.mode
|
150 |
+
self.logger.info(f"image.size: {image.size}, image.mode: {image.mode}")
|
151 |
+
|
152 |
+
# check image size and mode and return dict
|
153 |
+
try:
|
154 |
+
assert in_mode in ["RGB", "RGBA", "L"], f"Unsupported image mode: {in_mode}"
|
155 |
+
if self.tiling_size == 0:
|
156 |
+
assert in_size[0] * in_size[1] < self.max_image_size, f"Image is too large: {in_size}: {in_size[0] * in_size[1]} is greater than {self.max_image_size}"
|
157 |
+
assert outscale > 1 and outscale <= 10, f"Outscale must be between 1 and 10: {outscale}"
|
158 |
+
except AssertionError as e:
|
159 |
+
self.logger.error(f"Assertion error: {e}")
|
160 |
+
return {"image_url": None, "image_key": None, "error": str(e)}
|
161 |
+
|
162 |
+
|
163 |
+
############################################################
|
164 |
+
# Convert RGB to BGR (PIL uses RGB, OpenCV expects BGR)
|
165 |
+
############################################################
|
166 |
+
self.logger.info(f">>> 3/7: CONVERTING IMAGE TO OPENCV BGR/BGRA FORMAT....")
|
167 |
+
try:
|
168 |
+
opencv_image = np.array(image)
|
169 |
+
except Exception as e:
|
170 |
+
self.logger.error(f"Error converting image to opencv format: {e}")
|
171 |
+
return {"image_url": None, "image_key": None, "error": f"Failed to convert image to opencv format: {e}"}
|
172 |
+
|
173 |
+
# convert image to BGR
|
174 |
+
if in_mode == "RGB":
|
175 |
+
self.logger.info(f"converting RGB image to BGR")
|
176 |
+
opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_RGB2BGR)
|
177 |
+
elif in_mode == "RGBA":
|
178 |
+
self.logger.info(f"converting RGBA image to BGRA")
|
179 |
+
opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_RGBA2BGRA)
|
180 |
+
elif in_mode == "L":
|
181 |
+
self.logger.info(f"converting grayscale image to BGR")
|
182 |
+
opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_GRAY2RGB)
|
183 |
+
else:
|
184 |
+
self.logger.error(f"Unsupported image mode: {in_mode}")
|
185 |
+
return {"image_url": None, "image_key": None, "error": f"Unsupported image mode: {in_mode}"}
|
186 |
|
187 |
+
|
188 |
+
############################################################
|
189 |
+
# upscale image
|
190 |
+
############################################################
|
191 |
+
self.logger.info(f">>> 4/7: UPSCALING IMAGE....")
|
192 |
+
|
193 |
+
try:
|
194 |
+
output, _ = self.model.enhance(opencv_image, outscale=outscale)
|
195 |
+
except Exception as e:
|
196 |
+
self.logger.error(f"Error enhancing image: {e}")
|
197 |
+
return {"image_url": None, "image_key": None, "error": "Image enhancement failed."}
|
198 |
+
# debug
|
199 |
+
self.logger.info(f"output.shape: {output.shape}")
|
200 |
|
201 |
+
|
202 |
+
############################################################
|
203 |
+
# convert to RGB/RGBA format
|
204 |
+
############################################################
|
205 |
+
self.logger.info(f">>> 5/7: CONVERTING IMAGE TO RGB/RGBA FORMAT....")
|
206 |
+
out_shape = output.shape
|
207 |
+
if len(out_shape) == 3:
|
208 |
+
if out_shape[2] == 3:
|
209 |
+
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
210 |
+
elif out_shape[2] == 4:
|
211 |
+
output = cv2.cvtColor(output, cv2.COLOR_BGRA2RGBA)
|
212 |
+
else:
|
213 |
+
output = cv2.cvtColor(output, cv2.COLOR_GRAY2RGB)
|
214 |
+
|
215 |
+
|
216 |
+
############################################################
|
217 |
+
# convert to PIL image
|
218 |
+
############################################################
|
219 |
+
self.logger.info(f">>> 6/7: CONVERTING IMAGE TO PIL....")
|
220 |
+
try:
|
221 |
+
img_byte_arr = BytesIO()
|
222 |
+
output = Image.fromarray(output)
|
223 |
+
except Exception as e:
|
224 |
+
self.logger.error(f"Error converting upscaled image to PIL: {e}")
|
225 |
+
return {"image_url": None, "image_key": None, "error": f"Failed to convert upscaled image to PIL: {e}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
+
|
228 |
+
############################################################
|
229 |
+
# upload to s3
|
230 |
+
############################################################
|
231 |
+
self.logger.info(f">>> 7/7: UPLOADING IMAGE TO S3....")
|
232 |
+
try:
|
233 |
+
image_url, key = self.upload_to_s3(output)
|
234 |
+
self.logger.info(f"image uploaded to s3: {image_url}")
|
235 |
except Exception as e:
|
236 |
+
self.logger.error(f"Error uploading image to s3: {e}")
|
237 |
+
return {"image_url": None, "image_key": None, "error": f"Failed to upload image to s3: {e}"}
|
238 |
+
|
239 |
+
|
240 |
+
return {"image_url": image_url,
|
241 |
+
"image_key": key,
|
242 |
+
"error": None
|
243 |
+
}
|
244 |
+
|
245 |
|
246 |
+
def upload_to_s3(self, image: Image.Image) -> tuple[str, str]:
|
247 |
+
"""
|
248 |
+
Upload the image to S3 and return the URL and key.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
image (Image.Image): The image to upload.
|
252 |
|
253 |
+
Returns:
|
254 |
+
tuple[str, str]: A tuple containing the image URL and the S3 key.
|
255 |
+
"""
|
256 |
|
257 |
prefix = str(uuid.uuid4())
|
258 |
# Save the image to an in-memory file
|
259 |
in_mem_file = io.BytesIO()
|
260 |
+
image.save(in_mem_file, format='PNG')
|
261 |
in_mem_file.seek(0)
|
262 |
|
263 |
+
# Upload the image to S3
|
264 |
key = f"{prefix}.png"
|
265 |
self.s3.upload_fileobj(in_mem_file, Bucket=self.bucket_name, Key=key)
|
266 |
+
image_url = f"https://{self.bucket_name}.s3.amazonaws.com/{key}"
|
267 |
|
268 |
+
# Return the URL and the key
|
269 |
return image_url, key
|
270 |
|
271 |
+
def download_image_url(self, image_url: str) -> Image.Image:
|
272 |
+
"""
|
273 |
+
Downloads an image from the specified URL and returns it as a PIL Image.
|
274 |
+
|
275 |
+
Args:
|
276 |
+
image_url (str): The URL of the image to download.
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
Image.Image: The downloaded image as a PIL Image.
|
280 |
+
"""
|
281 |
response = requests.get(image_url)
|
282 |
image = Image.open(BytesIO(response.content))
|
283 |
return image
|
test_handler.ipynb
CHANGED
@@ -40,7 +40,18 @@
|
|
40 |
"cell_type": "code",
|
41 |
"execution_count": 3,
|
42 |
"metadata": {},
|
43 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
"source": [
|
45 |
"# init handler\n",
|
46 |
"my_handler = EndpointHandler(path=\".\")"
|
@@ -67,14 +78,14 @@
|
|
67 |
"INFO - >>> 5/7: CONVERTING IMAGE TO RGB/RGBA FORMAT....\n",
|
68 |
"INFO - >>> 6/7: CONVERTING IMAGE TO PIL....\n",
|
69 |
"INFO - >>> 7/7: UPLOADING IMAGE TO S3....\n",
|
70 |
-
"INFO - image uploaded to s3: https://
|
71 |
]
|
72 |
},
|
73 |
{
|
74 |
"name": "stdout",
|
75 |
"output_type": "stream",
|
76 |
"text": [
|
77 |
-
"https://
|
78 |
]
|
79 |
}
|
80 |
],
|
|
|
40 |
"cell_type": "code",
|
41 |
"execution_count": 3,
|
42 |
"metadata": {},
|
43 |
+
"outputs": [
|
44 |
+
{
|
45 |
+
"name": "stderr",
|
46 |
+
"output_type": "stream",
|
47 |
+
"text": [
|
48 |
+
"INFO - model_path: /workspace/real-esrgan/weights/Real-ESRGAN-x4plus.pth\n",
|
49 |
+
"INFO - TILING_SIZE is 0, not using tiling\n",
|
50 |
+
"INFO - initializing model\n",
|
51 |
+
"INFO - model initialized in 1.977891206741333 seconds\n"
|
52 |
+
]
|
53 |
+
}
|
54 |
+
],
|
55 |
"source": [
|
56 |
"# init handler\n",
|
57 |
"my_handler = EndpointHandler(path=\".\")"
|
|
|
78 |
"INFO - >>> 5/7: CONVERTING IMAGE TO RGB/RGBA FORMAT....\n",
|
79 |
"INFO - >>> 6/7: CONVERTING IMAGE TO PIL....\n",
|
80 |
"INFO - >>> 7/7: UPLOADING IMAGE TO S3....\n",
|
81 |
+
"INFO - image uploaded to s3: https://jiffy-staging-upscaled-images.s3.amazonaws.com/25b91e15-b785-47ca-81a6-ad5fbdf8b92a.png\n"
|
82 |
]
|
83 |
},
|
84 |
{
|
85 |
"name": "stdout",
|
86 |
"output_type": "stream",
|
87 |
"text": [
|
88 |
+
"https://jiffy-staging-upscaled-images.s3.amazonaws.com/25b91e15-b785-47ca-81a6-ad5fbdf8b92a.png 25b91e15-b785-47ca-81a6-ad5fbdf8b92a.png\n"
|
89 |
]
|
90 |
}
|
91 |
],
|