garg-aayush
commited on
Commit
·
022c628
1
Parent(s):
6ead77d
add unit tests, create endpoint test notebook
Browse files- test_handler.ipynb +128 -0
- unit_tests.py +95 -0
test_handler.ipynb
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stderr",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"/usr/local/lib/python3.10/dist-packages/torchvision/transforms/functional_tensor.py:5: UserWarning: The torchvision.transforms.functional_tensor module is deprecated in 0.15 and will be **removed in 0.17**. Please don't rely on it. You probably just need to use APIs in torchvision.transforms.functional or in torchvision.transforms.v2.functional.\n",
|
13 |
+
" warnings.warn(\n"
|
14 |
+
]
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"source": [
|
18 |
+
"from handler import EndpointHandler\n",
|
19 |
+
"import base64\n",
|
20 |
+
"from io import BytesIO\n",
|
21 |
+
"from PIL import Image\n",
|
22 |
+
"import cv2\n",
|
23 |
+
"import random\n"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 2,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"# helper decoder\n",
|
33 |
+
"def decode_base64_image(image_string):\n",
|
34 |
+
" base64_image = base64.b64decode(image_string)\n",
|
35 |
+
" buffer = BytesIO(base64_image)\n",
|
36 |
+
" return Image.open(buffer)"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"execution_count": 3,
|
42 |
+
"metadata": {},
|
43 |
+
"outputs": [],
|
44 |
+
"source": [
|
45 |
+
"# init handler\n",
|
46 |
+
"my_handler = EndpointHandler(path=\".\")"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"execution_count": 6,
|
52 |
+
"metadata": {},
|
53 |
+
"outputs": [
|
54 |
+
{
|
55 |
+
"name": "stdout",
|
56 |
+
"output_type": "stream",
|
57 |
+
"text": [
|
58 |
+
"image.size: (1200, 517), image.mode: RGBA, outscale: 10.0\n"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"name": "stdout",
|
63 |
+
"output_type": "stream",
|
64 |
+
"text": [
|
65 |
+
"output.shape: (5170, 12000, 4)\n",
|
66 |
+
"out_image.size: (12000, 5170)\n",
|
67 |
+
"image.size: (1056, 1068), image.mode: RGB, outscale: 3.0\n",
|
68 |
+
"output.shape: (3204, 3168, 3)\n",
|
69 |
+
"out_image.size: (3168, 3204)\n",
|
70 |
+
"image.size: (1056, 1068), image.mode: L, outscale: 5.49\n",
|
71 |
+
"output.shape: (5863, 5797, 3)\n",
|
72 |
+
"out_image.size: (5797, 5863)\n"
|
73 |
+
]
|
74 |
+
}
|
75 |
+
],
|
76 |
+
"source": [
|
77 |
+
"img_dir = \"test_data/\"\n",
|
78 |
+
"img_names = [\"4121783.png\", \"FB_IMG_1725931665635.jpg\", \"FB_IMG_1725931665635_gray.jpg\"]\n",
|
79 |
+
"out_scales = [10, 3, 5.49]\n",
|
80 |
+
"for img_name, outscale in zip(img_names, out_scales):\n",
|
81 |
+
" image_path = img_dir + img_name\n",
|
82 |
+
" # create payload\n",
|
83 |
+
" with open(image_path, \"rb\") as i:\n",
|
84 |
+
" b64 = base64.b64encode(i.read())\n",
|
85 |
+
" b64 = b64.decode(\"utf-8\")\n",
|
86 |
+
" payload = {\n",
|
87 |
+
" \"inputs\": {\"image\": b64, \n",
|
88 |
+
" \"outscale\": outscale\n",
|
89 |
+
" }\n",
|
90 |
+
" }\n",
|
91 |
+
"\n",
|
92 |
+
"\n",
|
93 |
+
" output_payload = my_handler(payload)\n",
|
94 |
+
" out_image = decode_base64_image(output_payload[\"out_image\"])\n",
|
95 |
+
" print(f\"out_image.size: {out_image.size}\")\n",
|
96 |
+
" out_image.save(f\"test_data/outputs/{img_name.split('.')[0]}_outscale_{outscale}.png\")\n"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": null,
|
102 |
+
"metadata": {},
|
103 |
+
"outputs": [],
|
104 |
+
"source": []
|
105 |
+
}
|
106 |
+
],
|
107 |
+
"metadata": {
|
108 |
+
"kernelspec": {
|
109 |
+
"display_name": "Python 3",
|
110 |
+
"language": "python",
|
111 |
+
"name": "python3"
|
112 |
+
},
|
113 |
+
"language_info": {
|
114 |
+
"codemirror_mode": {
|
115 |
+
"name": "ipython",
|
116 |
+
"version": 3
|
117 |
+
},
|
118 |
+
"file_extension": ".py",
|
119 |
+
"mimetype": "text/x-python",
|
120 |
+
"name": "python",
|
121 |
+
"nbconvert_exporter": "python",
|
122 |
+
"pygments_lexer": "ipython3",
|
123 |
+
"version": "3.10.12"
|
124 |
+
}
|
125 |
+
},
|
126 |
+
"nbformat": 4,
|
127 |
+
"nbformat_minor": 2
|
128 |
+
}
|
unit_tests.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
from unittest.mock import patch, MagicMock
|
3 |
+
from PIL import Image
|
4 |
+
import base64
|
5 |
+
import numpy as np
|
6 |
+
from io import BytesIO
|
7 |
+
from handler import EndpointHandler
|
8 |
+
|
9 |
+
class TestEndpointHandler(unittest.TestCase):
|
10 |
+
|
11 |
+
@patch('handler.RealESRGANer')
|
12 |
+
def setUp(self, mock_RealESRGANer):
|
13 |
+
self.handler = EndpointHandler(path=".")
|
14 |
+
self.mock_model = mock_RealESRGANer.return_value
|
15 |
+
|
16 |
+
def create_test_image(self, mode='RGB', size=(100, 100)):
|
17 |
+
image = Image.new(mode, size)
|
18 |
+
buffered = BytesIO()
|
19 |
+
image.save(buffered, format="PNG")
|
20 |
+
return base64.b64encode(buffered.getvalue()).decode()
|
21 |
+
|
22 |
+
def get_svg_image(self):
|
23 |
+
test_image = "test_data/834989.svg"
|
24 |
+
return test_image
|
25 |
+
|
26 |
+
def test_float_outscale(self):
|
27 |
+
test_image = self.create_test_image()
|
28 |
+
input_data = {"inputs": {"image": test_image, "outscale": 2.5}}
|
29 |
+
|
30 |
+
self.mock_model.enhance.return_value = (np.zeros((250, 250, 3), dtype=np.uint8), None)
|
31 |
+
result = self.handler(input_data)
|
32 |
+
|
33 |
+
self.assertIn("out_image", result)
|
34 |
+
self.assertIsNone(result["error"])
|
35 |
+
|
36 |
+
def test_outscale_too_small(self):
|
37 |
+
test_image = self.create_test_image()
|
38 |
+
input_data = {"inputs": {"image": test_image, "outscale": 0.5}}
|
39 |
+
|
40 |
+
result = self.handler(input_data)
|
41 |
+
|
42 |
+
self.assertIsNone(result["out_image"])
|
43 |
+
self.assertIn("Outscale must be between 1 and 10", result["error"])
|
44 |
+
|
45 |
+
def test_outscale_too_large(self):
|
46 |
+
test_image = self.create_test_image()
|
47 |
+
input_data = {"inputs": {"image": test_image, "outscale": 11}}
|
48 |
+
|
49 |
+
result = self.handler(input_data)
|
50 |
+
|
51 |
+
self.assertIsNone(result["out_image"])
|
52 |
+
self.assertIn("Outscale must be between 1 and 10", result["error"])
|
53 |
+
|
54 |
+
def test_valid_rgb_image(self):
|
55 |
+
test_image = self.create_test_image()
|
56 |
+
input_data = {"inputs": {"image": test_image, "outscale": 2}}
|
57 |
+
|
58 |
+
self.mock_model.enhance.return_value = (np.zeros((200, 200, 3), dtype=np.uint8), None)
|
59 |
+
|
60 |
+
result = self.handler(input_data)
|
61 |
+
|
62 |
+
self.assertIn("out_image", result)
|
63 |
+
self.assertIsNone(result["error"])
|
64 |
+
self.mock_model.enhance.assert_called_once()
|
65 |
+
|
66 |
+
def test_valid_rgba_image(self):
|
67 |
+
test_image = self.create_test_image(mode='RGBA')
|
68 |
+
input_data = {"inputs": {"image": test_image, "outscale": 2}}
|
69 |
+
|
70 |
+
self.mock_model.enhance.return_value = (np.zeros((400, 400, 4), dtype=np.uint8), None)
|
71 |
+
|
72 |
+
result = self.handler(input_data)
|
73 |
+
|
74 |
+
self.assertIn("out_image", result)
|
75 |
+
self.assertIsNone(result["error"])
|
76 |
+
|
77 |
+
def test_image_too_large(self):
|
78 |
+
test_image = self.create_test_image(size=(1500, 1500))
|
79 |
+
input_data = {"inputs": {"image": test_image}}
|
80 |
+
|
81 |
+
result = self.handler(input_data)
|
82 |
+
|
83 |
+
self.assertIsNone(result["out_image"])
|
84 |
+
self.assertIn("Image is too large", result["error"])
|
85 |
+
|
86 |
+
def test_missing_image_key(self):
|
87 |
+
input_data = {"inputs": {}}
|
88 |
+
|
89 |
+
result = self.handler(input_data)
|
90 |
+
|
91 |
+
self.assertIsNone(result["out_image"])
|
92 |
+
self.assertIn("Missing key", result["error"])
|
93 |
+
|
94 |
+
if __name__ == '__main__':
|
95 |
+
unittest.main()
|