jiey2 Flmc commited on
Commit
35bab04
·
0 Parent(s):

Duplicate from Flmc/DISC-MedLLM

Browse files

Co-authored-by: Eric <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - Flmc/DISC-Med-SFT
5
+ language:
6
+ - zh
7
+ tags:
8
+ - medical
9
+ ---
10
+ This repository contains the DISC-MedLLM, version of Baichuan-13b-base as the base model.
11
+
12
+ **Please note that due to the ongoing development of the project, the model weights in this repository may differ from those in our currently deployed demo.**
13
+
14
+ Check [DISC-MedLLM](https://github.com/FudanDISC/DISC-MedLLM) for more information.
15
+
16
+ # DISC-MedLLM
17
+
18
+ [**Demo**](http://med.fudan-disc.com) | [**Tech Report**](https://arxiv.org/abs/2308.14346)
19
+
20
+ This is the repo of DISC-MedLLM, a medical domain-specific LLM designed for conversational healthcare scenarios by [Fudan-DISC](http://fudan-disc.com) lab.
21
+
22
+ The following resources have been released:
23
+ * DISC-Med-SFT Dataset (with out behavioral preference dataset)
24
+ * Model [weights](https://huggingface.co/Flmc/DISC-MedLLM) of DISC-MedLLM
25
+
26
+ You can check this [link](http://medllm.fudan-disc.com) to try our online demo.
27
+
28
+ ## Overview
29
+ The DISC-MedLLM is a large-scale domain-specific model designed for conversational healthcare scenarios. It can address a variety of your needs, including medical consultations and treatment inquiries, offering you high-quality health support services.
30
+
31
+ The DISC-MedLLM effectively bridges the gap between general language models and real-world medical consultations, as evidenced by experimental results.
32
+
33
+ Owing to our goal-oriented strategy and the framework that integrates both LLM and Human in the loop based on real-world doctor-patient dialogues and knowledge graphs, DISC-MedLLM boasts several features:
34
+
35
+ * **Knowledge-intensive and reliable**
36
+ * **Ability of multi-turn inquiry**
37
+ * **Alignment with human preferences**
38
+
39
+
40
+ ## Dataset
41
+ <!-- In order to align the distribution of actual doctor responses with the intended AI doctor response distribution, our dataset is constructed from five main resources: Real-world Conversations (420k), Knowledge Graph-derived Question-Answer pairs (50k), Artificially Annotated Data aligned with human preferences (2k), MedMCQA (8k), and additional general data (34k). -->
42
+
43
+ To train DISC-MedLLM, we construct a high-quality dataset called DISC-Med-SFT consisting of over 470k distinct examples derived from existing medical datasets. We adopt a goal-oriented strategy by selectively reconstructing the dataset using a few deliberately chosen sources. These data sources serve the purpose of assisting LLMs in acquiring medical domain knowledge, aligning behavioral patterns with human preferences, and capturing real-world online medical dialogue distributions.
44
+
45
+ <!-- <style type="text/css">
46
+ .tg {border-collapse:collapse;border-spacing:0;}
47
+ .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
48
+ overflow:hidden;padding:10px 5px;word-break:normal;}
49
+ .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
50
+ font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
51
+ .tg .tg-9wq8{border-color:inherit;text-align:center;vertical-align:middle}
52
+ .tg .tg-c3ow{border-color:inherit;text-align:center;vertical-align:top}
53
+ </style> -->
54
+ <table class="tg" style="undefined;table-layout: fixed; width: 442px">
55
+ <colgroup>
56
+ <col style="width: 204.428571px">
57
+ <col style="width: 135.428571px">
58
+ <col style="width: 102.428571px">
59
+ </colgroup>
60
+ <thead>
61
+ <tr>
62
+ <th class="tg-9wq8" rowspan="2"><br>Dateset</th>
63
+ <th class="tg-9wq8" rowspan="2"><br>Original Source</th>
64
+ <th class="tg-9wq8" rowspan="2"><br>Size</th>
65
+ </tr>
66
+ <tr>
67
+ </tr>
68
+ </thead>
69
+ <tbody>
70
+ <tr>
71
+ <td class="tg-9wq8" rowspan="2">Re-constructed AI Doctor-Patient Dialogue</td>
72
+ <td class="tg-9wq8">MedDialog</td>
73
+ <td class="tg-9wq8">400k</td>
74
+ </tr>
75
+ <tr>
76
+ <td class="tg-9wq8">cMedQA2</td>
77
+ <td class="tg-c3ow">20k</td>
78
+ </tr>
79
+ <tr>
80
+ <td class="tg-c3ow">Knowledge Graph <br>QA pairs</td>
81
+ <td class="tg-9wq8">CMeKG</td>
82
+ <td class="tg-9wq8">50k</td>
83
+ </tr>
84
+ <tr>
85
+ <td class="tg-c3ow">Behavior Preference<br>Dataset</td>
86
+ <td class="tg-9wq8">Manual selection</td>
87
+ <td class="tg-9wq8">2k</td>
88
+ </tr>
89
+ <tr>
90
+ <td class="tg-9wq8" rowspan="3">Others</td>
91
+ <td class="tg-c3ow">MedMCQA</td>
92
+ <td class="tg-c3ow">8k</td>
93
+ </tr>
94
+ <tr>
95
+ <td class="tg-c3ow">MOSS-SFT</td>
96
+ <td class="tg-c3ow">33k</td>
97
+ </tr>
98
+ <tr>
99
+ <td class="tg-c3ow">Alpaca-GPT4-zh</td>
100
+ <td class="tg-c3ow">1k</td>
101
+ </tr>
102
+ </tbody>
103
+ </table>
104
+
105
+ <br>
106
+
107
+
108
+ ## Deploy
109
+ The current version of DISC-MedLLM is derived from the [Baichuan-13B-Base](https://github.com/baichuan-inc/Baichuan-13B). You can directly download our model weights from the HuggingFace [repository](https://huggingface.co/Flmc/DISC-MedLLM), or automatically obtain them through the demo code.
110
+
111
+
112
+ ### Using through hugging face transformers
113
+ ```python
114
+ >>> import torch
115
+ >>> from transformers import AutoModelForCausalLM, AutoTokenizer
116
+ >>> from transformers.generation.utils import GenerationConfig
117
+ >>> tokenizer = AutoTokenizer.from_pretrained("Flmc/DISC-MedLLM", use_fast=False, trust_remote_code=True)
118
+ >>> model = AutoModelForCausalLM.from_pretrained("Flmc/DISC-MedLLM", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True)
119
+ >>> model.generation_config = GenerationConfig.from_pretrained("Flmc/DISC-MedLLM")
120
+ >>> messages = []
121
+ >>> messages.append({"role": "user", "content": "我感觉自己颈椎非常不舒服,每天睡醒都会头痛"})
122
+ >>> response = model.chat(tokenizer, messages)
123
+ >>> print(response)
124
+ ```
125
+
126
+
127
+ Additionally, since the current version uses Baichuan as the base model, you can refer to its [repo](https://github.com/baichuan-inc/Baichuan-13B) for deploying with int8, int4 quantized inference. However, using quantized deployment will result in performance degradation.
128
+ <br>
129
+
130
+ ## Training
131
+ You can fine-tuning our model using the data same as our data schema.
132
+ Our train code is derived from [Firefly](https://github.com/yangjianxin1/Firefly) with the different data schema and dialogue format. We jsut provide the code of Full Params Fine-tuning:
133
+ ```shell
134
+ deepspeed --num_gpus={num_gpus} ./train/train.py --train_args_file ./train/train_args/sft.json
135
+ ```
136
+ > Please check the setup of `sft.json` before you attempt to start training.
137
+
138
+ <br>If you want to fine-tuning our model with other training code, please use the following dialogue format.
139
+ ```shell
140
+ <\b><$user_token>content<$assistant_token>content<\s><$user_token>content ...
141
+ ```
142
+ The `user_token` and `assistant_token` we used are `195` and `196`, respectly. Which is same as Baichuan-13b-Chat.
143
+
144
+
145
+ ## Delcaration
146
+ Due to the inherent limitations of language models, we cannot assure the accuracy or reliability of information generated by this model. This model is designed exclusively for research and testing by individuals and academic groups. We urge users to critically assess any information or medical advice obtained through the model's output. Blindly trusting or following such information is strongly discouraged. We disclaim responsibility for any issues, risks, or adverse consequences resulting from the model's use.
147
+
148
+ ## Licenses
149
+ The use of the source code in this repository complies with the Apache 2.0 License.
150
+
151
+ ## Citation
152
+ ```angular2
153
+ @misc{bao2023discmedllm,
154
+ title={DISC-MedLLM: Bridging General Large Language Models and Real-World Medical Consultation},
155
+ author={Zhijie Bao and Wei Chen and Shengze Xiao and Kuang Ren and Jiaao Wu and Cheng Zhong and Jiajie Peng and Xuanjing Huang and Zhongyu Wei},
156
+ year={2023},
157
+ eprint={2308.14346},
158
+ archivePrefix={arXiv},
159
+ primaryClass={cs.CL}
160
+ }
161
+ ```
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "_name_or_path": "/root/output/baichuan13b-sft-after300k-artificial-v2/final",
4
+ "architectures": [
5
+ "BaichuanForCausalLM"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_baichuan.BaichuanConfig",
9
+ "AutoModelForCausalLM": "modeling_baichuan.BaichuanForCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 5120,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 13696,
17
+ "model_max_length": 4096,
18
+ "model_type": "baichuan",
19
+ "num_attention_heads": 40,
20
+ "num_hidden_layers": 40,
21
+ "pad_token_id": 0,
22
+ "rms_norm_eps": 1e-06,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.31.0",
26
+ "use_cache": true,
27
+ "vocab_size": 64000
28
+ }
configuration_baichuan.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+
5
+ class BaichuanConfig(PretrainedConfig):
6
+ model_type = "baichuan"
7
+ keys_to_ignore_at_inference = ["past_key_values"]
8
+
9
+ def __init__(
10
+ self,
11
+ vocab_size=64000,
12
+ hidden_size=5120,
13
+ intermediate_size=13696,
14
+ num_hidden_layers=40,
15
+ num_attention_heads=40,
16
+ hidden_act="silu",
17
+ model_max_length=4096,
18
+ initializer_range=0.02,
19
+ rms_norm_eps=1e-6,
20
+ use_cache=True,
21
+ pad_token_id=0,
22
+ bos_token_id=1,
23
+ eos_token_id=2,
24
+ tie_word_embeddings=False,
25
+ gradient_checkpointing=False,
26
+ **kwargs,
27
+ ):
28
+ self.vocab_size = vocab_size
29
+ self.model_max_length = model_max_length
30
+ self.hidden_size = hidden_size
31
+ self.intermediate_size = intermediate_size
32
+ self.num_hidden_layers = num_hidden_layers
33
+ self.num_attention_heads = num_attention_heads
34
+ self.hidden_act = hidden_act
35
+ self.initializer_range = initializer_range
36
+ self.rms_norm_eps = rms_norm_eps
37
+ self.use_cache = use_cache
38
+ self.gradient_checkpointing = gradient_checkpointing,
39
+ super().__init__(
40
+ pad_token_id=pad_token_id,
41
+ bos_token_id=bos_token_id,
42
+ eos_token_id=eos_token_id,
43
+ tie_word_embeddings=tie_word_embeddings,
44
+ **kwargs,
45
+ )
46
+
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "assistant_token_id": 196,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "max_new_tokens": 2048,
7
+ "pad_token_id": 0,
8
+ "repetition_penalty": 1.1,
9
+ "temperature": 0.3,
10
+ "top_k": 5,
11
+ "top_p": 0.85,
12
+ "transformers_version": "4.31.0",
13
+ "user_token_id": 195
14
+ }
generation_utils.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+ from queue import Queue
3
+
4
+ import torch
5
+
6
+
7
+ def build_chat_input(model, tokenizer, messages: List[dict], max_new_tokens: int=0):
8
+ def _parse_messages(messages, split_role="user"):
9
+ system, rounds = "", []
10
+ round = []
11
+ for i, message in enumerate(messages):
12
+ if message["role"] == "system":
13
+ assert i == 0
14
+ system = message["content"]
15
+ continue
16
+ if message["role"] == split_role and round:
17
+ rounds.append(round)
18
+ round = []
19
+ round.append(message)
20
+ if round:
21
+ rounds.append(round)
22
+ return system, rounds
23
+
24
+ max_new_tokens = max_new_tokens or model.generation_config.max_new_tokens
25
+ max_input_tokens = model.config.model_max_length - max_new_tokens
26
+ system, rounds = _parse_messages(messages, split_role="user")
27
+ system_tokens = tokenizer.encode(system)
28
+ max_history_tokens = max_input_tokens - len(system_tokens)
29
+
30
+ history_tokens = []
31
+ for round in rounds[::-1]:
32
+ round_tokens = []
33
+ for message in round:
34
+ if message["role"] == "user":
35
+ round_tokens.append(model.generation_config.user_token_id)
36
+ else:
37
+ round_tokens.append(model.generation_config.assistant_token_id)
38
+ round_tokens.extend(tokenizer.encode(message["content"]))
39
+ if len(history_tokens) == 0 or len(history_tokens) + len(round_tokens) <= max_history_tokens:
40
+ history_tokens = round_tokens + history_tokens # concat left
41
+ if len(history_tokens) < max_history_tokens:
42
+ continue
43
+ break
44
+
45
+ input_tokens = system_tokens + history_tokens
46
+ if messages[-1]["role"] != "assistant":
47
+ input_tokens.append(model.generation_config.assistant_token_id)
48
+ input_tokens = input_tokens[-max_input_tokens:] # truncate left
49
+ return torch.LongTensor([input_tokens]).to(model.device)
50
+
51
+
52
+ class TextIterStreamer:
53
+ def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
54
+ self.tokenizer = tokenizer
55
+ self.skip_prompt = skip_prompt
56
+ self.skip_special_tokens = skip_special_tokens
57
+ self.tokens = []
58
+ self.text_queue = Queue()
59
+ self.next_tokens_are_prompt = True
60
+
61
+ def put(self, value):
62
+ if self.skip_prompt and self.next_tokens_are_prompt:
63
+ self.next_tokens_are_prompt = False
64
+ else:
65
+ if len(value.shape) > 1:
66
+ value = value[0]
67
+ self.tokens.extend(value.tolist())
68
+ self.text_queue.put(
69
+ self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens))
70
+
71
+ def end(self):
72
+ self.text_queue.put(None)
73
+
74
+ def __iter__(self):
75
+ return self
76
+
77
+ def __next__(self):
78
+ value = self.text_queue.get()
79
+ if value is None:
80
+ raise StopIteration()
81
+ else:
82
+ return value
modeling_baichuan.py ADDED
@@ -0,0 +1,572 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
2
+
3
+ import math
4
+ from threading import Thread
5
+ from typing import List, Optional, Tuple, Union
6
+
7
+ import torch
8
+ import torch.utils.checkpoint
9
+ from torch.nn import CrossEntropyLoss
10
+ from transformers import PreTrainedModel
11
+ from transformers.activations import ACT2FN
12
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
13
+ from transformers.utils import logging
14
+ from transformers.generation.utils import GenerationConfig
15
+
16
+ from .configuration_baichuan import BaichuanConfig
17
+ from .generation_utils import build_chat_input, TextIterStreamer
18
+
19
+ logger = logging.get_logger(__name__)
20
+
21
+
22
+ def _get_interleave(n):
23
+ def _get_interleave_power_of_2(n):
24
+ start = (2 ** (-2 ** -(math.log2(n) - 3)))
25
+ ratio = start
26
+ return [start * ratio ** i for i in range(n)]
27
+
28
+ if math.log2(n).is_integer():
29
+ return _get_interleave_power_of_2(n)
30
+ else:
31
+ closest_power_of_2 = 2 ** math.floor(math.log2(n))
32
+ return _get_interleave_power_of_2(closest_power_of_2) + \
33
+ _get_interleave(2 * closest_power_of_2)[0::2][:n - closest_power_of_2]
34
+
35
+ def _fill_with_neg_inf(t):
36
+ """FP16-compatible function that fills a tensor with -inf."""
37
+ return t.float().fill_(float("-inf")).type_as(t)
38
+
39
+ def _gen_alibi_mask(n_head, max_pos):
40
+ """used in inference only"""
41
+ slopes = torch.Tensor(_get_interleave(n_head))
42
+ alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(max_pos).unsqueeze(0).unsqueeze(0).expand(
43
+ n_head, -1, -1)
44
+ alibi = alibi.view(n_head, 1, max_pos)
45
+ alibi_mask = torch.triu(
46
+ _fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1
47
+ )
48
+ alibi_mask = alibi_mask.unsqueeze(0) + alibi
49
+ return alibi_mask
50
+
51
+ def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
52
+ """used in training only"""
53
+ dim = tensor.size(1)
54
+ _future_mask = torch.triu(
55
+ _fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1
56
+ )
57
+ _future_mask = _future_mask.unsqueeze(0) + alibi
58
+ _future_mask = _future_mask.to(tensor)
59
+ return _future_mask[:tensor.shape[0] * attn_heads, :maxpos, :maxpos]
60
+
61
+
62
+ class RMSNorm(torch.nn.Module):
63
+ def __init__(self, hidden_size, epsilon=1e-6):
64
+ super().__init__()
65
+ self.weight = torch.nn.Parameter(torch.empty(hidden_size))
66
+ self.epsilon = epsilon
67
+
68
+ def forward(self, hidden_states):
69
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
70
+ hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
71
+
72
+ # convert into half-precision
73
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
74
+ hidden_states = hidden_states.to(self.weight.dtype)
75
+
76
+ return self.weight * hidden_states
77
+
78
+
79
+ class MLP(torch.nn.Module):
80
+ def __init__(
81
+ self,
82
+ hidden_size: int,
83
+ intermediate_size: int,
84
+ hidden_act: str,
85
+ ):
86
+ super().__init__()
87
+ self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
88
+ self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
89
+ self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
90
+ self.act_fn = ACT2FN[hidden_act]
91
+
92
+ def forward(self, x):
93
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
94
+
95
+
96
+ class BaichuanAttention(torch.nn.Module):
97
+ def __init__(self, config: BaichuanConfig):
98
+ super().__init__()
99
+ self.config = config
100
+ self.hidden_size = config.hidden_size
101
+ self.num_heads = config.num_attention_heads
102
+ self.head_dim = self.hidden_size // self.num_heads
103
+ self.max_position_embeddings = config.model_max_length
104
+
105
+ if (self.head_dim * self.num_heads) != self.hidden_size:
106
+ raise ValueError(
107
+ f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
108
+ )
109
+ self.W_pack = torch.nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
110
+ self.o_proj = torch.nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
111
+
112
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
113
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
114
+
115
+ def forward(
116
+ self,
117
+ hidden_states: torch.Tensor,
118
+ attention_mask: Optional[torch.Tensor] = None,
119
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
120
+ output_attentions: bool = False,
121
+ use_cache: bool = False,
122
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
123
+
124
+ bsz, q_len, _ = hidden_states.size()
125
+
126
+ proj = self.W_pack(hidden_states)
127
+ proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
128
+ query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
129
+ key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
130
+ value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
131
+
132
+ kv_seq_len = key_states.shape[-2]
133
+ if past_key_value is not None:
134
+ kv_seq_len += past_key_value[0].shape[-2]
135
+
136
+ if past_key_value is not None:
137
+ # reuse k, v, self_attention
138
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
139
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
140
+
141
+ past_key_value = (key_states, value_states) if use_cache else None
142
+
143
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
144
+
145
+ if attention_mask is not None:
146
+ if q_len == 1: # inference with cache
147
+ if len(attention_mask.size()) == 4:
148
+ attention_mask = attention_mask[:, :, -1:, :]
149
+ else:
150
+ attention_mask = attention_mask[:, -1:, :]
151
+ attn_weights = attn_weights + attention_mask
152
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
153
+
154
+ attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
155
+
156
+ attn_output = torch.matmul(attn_weights, value_states)
157
+
158
+ attn_output = attn_output.transpose(1, 2)
159
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
160
+ attn_output = self.o_proj(attn_output)
161
+
162
+ if not output_attentions:
163
+ attn_weights = None
164
+
165
+ return attn_output, attn_weights, past_key_value
166
+
167
+
168
+ class BaichuanLayer(torch.nn.Module):
169
+ def __init__(self, config: BaichuanConfig):
170
+ super().__init__()
171
+ self.hidden_size = config.hidden_size
172
+ self.self_attn = BaichuanAttention(config=config)
173
+ self.mlp = MLP(
174
+ hidden_size=self.hidden_size,
175
+ intermediate_size=config.intermediate_size,
176
+ hidden_act=config.hidden_act,
177
+ )
178
+ self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
179
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
180
+
181
+ def forward(
182
+ self,
183
+ hidden_states: torch.Tensor,
184
+ attention_mask: Optional[torch.Tensor] = None,
185
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
186
+ output_attentions: Optional[bool] = False,
187
+ use_cache: Optional[bool] = False,
188
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
189
+
190
+ residual = hidden_states
191
+
192
+ hidden_states = self.input_layernorm(hidden_states)
193
+
194
+ # Self Attention
195
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
196
+ hidden_states=hidden_states,
197
+ attention_mask=attention_mask,
198
+ past_key_value=past_key_value,
199
+ output_attentions=output_attentions,
200
+ use_cache=use_cache,
201
+ )
202
+ hidden_states = residual + hidden_states
203
+
204
+ # Fully Connected
205
+ residual = hidden_states
206
+ hidden_states = self.post_attention_layernorm(hidden_states)
207
+ hidden_states = self.mlp(hidden_states)
208
+ hidden_states = residual + hidden_states
209
+
210
+ outputs = (hidden_states,)
211
+
212
+ if use_cache:
213
+ outputs += (present_key_value,)
214
+
215
+ return outputs
216
+
217
+
218
+ class BaichuanPreTrainedModel(PreTrainedModel):
219
+ config_class = BaichuanConfig
220
+ base_model_prefix = "model"
221
+ supports_gradient_checkpointing = True
222
+ _no_split_modules = ["BaichuanLayer"]
223
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
224
+
225
+ def _init_weights(self, module):
226
+ std = self.config.initializer_range
227
+ if isinstance(module, torch.nn.Linear):
228
+ module.weight.data.normal_(mean=0.0, std=std)
229
+ if module.bias is not None:
230
+ module.bias.data.zero_()
231
+ elif isinstance(module, torch.nn.Embedding):
232
+ module.weight.data.normal_(mean=0.0, std=std)
233
+ if module.padding_idx is not None:
234
+ module.weight.data[module.padding_idx].zero_()
235
+
236
+ def _set_gradient_checkpointing(self, module, value=False):
237
+ if isinstance(module, BaichuanModel):
238
+ module.gradient_checkpointing = value
239
+
240
+
241
+ class BaichuanModel(BaichuanPreTrainedModel):
242
+ def __init__(self, config: BaichuanConfig):
243
+ super().__init__(config)
244
+ self.padding_idx = config.pad_token_id
245
+ self.vocab_size = config.vocab_size
246
+ self.n_head = config.num_attention_heads
247
+ self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
248
+ self.layers = torch.nn.ModuleList([BaichuanLayer(config) for _ in range(config.num_hidden_layers)])
249
+ self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
250
+
251
+ self.gradient_checkpointing = config.gradient_checkpointing
252
+ self.post_init()
253
+ self.max_cache_pos = config.model_max_length
254
+ self.first_run = True
255
+ self.alibi_mask = None
256
+
257
+ def get_input_embeddings(self):
258
+ return self.embed_tokens
259
+
260
+ def set_input_embeddings(self, value):
261
+ self.embed_tokens = value
262
+
263
+ def get_alibi_mask(self, tensor, seq_length_with_past):
264
+ if self.training:
265
+ slopes = torch.Tensor(_get_interleave(self.n_head))
266
+ alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(seq_length_with_past).unsqueeze(0).unsqueeze(0).expand(
267
+ self.n_head,
268
+ -1, -1)
269
+ alibi = alibi.view(self.n_head, 1, seq_length_with_past)
270
+ mask = _buffered_future_mask(tensor, seq_length_with_past, alibi, self.n_head)
271
+ else:
272
+ if self.first_run:
273
+ self.first_run = False
274
+ self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
275
+ if seq_length_with_past > self.max_cache_pos:
276
+ self.max_cache_pos = seq_length_with_past
277
+ self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
278
+ mask = self.future_mask[:self.n_head, :seq_length_with_past, :seq_length_with_past]
279
+ return mask
280
+
281
+ def forward(
282
+ self,
283
+ input_ids: torch.LongTensor = None,
284
+ attention_mask: Optional[torch.Tensor] = None,
285
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
286
+ inputs_embeds: Optional[torch.FloatTensor] = None,
287
+ use_cache: Optional[bool] = False,
288
+ output_attentions: Optional[bool] = False,
289
+ output_hidden_states: Optional[bool] = False,
290
+ return_dict: Optional[bool] = True,
291
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
292
+
293
+ if input_ids is not None and inputs_embeds is not None:
294
+ raise ValueError("You cannot provide both input_ids and inputs_embeds simultaneously")
295
+ elif input_ids is not None:
296
+ batch_size, seq_length = input_ids.shape
297
+ elif inputs_embeds is not None:
298
+ batch_size, seq_length, _ = inputs_embeds.shape
299
+ else:
300
+ raise ValueError("You need to provide input_ids or inputs_embeds")
301
+
302
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
303
+
304
+ seq_length_with_past = seq_length
305
+
306
+ if past_key_values is not None:
307
+ past_key_values_length = past_key_values[0][0].shape[2]
308
+ seq_length_with_past = seq_length_with_past + past_key_values_length
309
+
310
+ if inputs_embeds is None:
311
+ inputs_embeds = self.embed_tokens(input_ids)
312
+
313
+ if self.training:
314
+ if self.alibi_mask is None or self.alibi_mask.shape[-1] != seq_length_with_past:
315
+ self.alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
316
+ alibi_mask = self.alibi_mask
317
+ else:
318
+ alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
319
+
320
+ if attention_mask is not None:
321
+ if len(attention_mask.shape) == 2:
322
+ expanded_mask = attention_mask.to(alibi_mask.dtype)
323
+ expanded_mask = torch.tril(torch.gt(expanded_mask[:, :, None] * expanded_mask[:, None, :], 0)
324
+ ) * torch.eq(expanded_mask[:, :, None] - expanded_mask[:, None, :], 0)
325
+ else:
326
+ expanded_mask = attention_mask
327
+ bsz = inputs_embeds.size(0)
328
+ src_len, tgt_len = alibi_mask.size()[-2:]
329
+ expanded_mask = expanded_mask.unsqueeze(1).expand(bsz, 1, src_len, tgt_len).to(alibi_mask.dtype)
330
+ inverted_mask = 1.0 - expanded_mask
331
+ inverted_mask = inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(alibi_mask.dtype).min)
332
+ attention_mask = inverted_mask + alibi_mask.unsqueeze(0)
333
+ else:
334
+ attention_mask = alibi_mask
335
+
336
+ hidden_states = inputs_embeds
337
+
338
+ if self.gradient_checkpointing and self.training:
339
+ if use_cache:
340
+ logger.warning_once(
341
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
342
+ )
343
+ use_cache = False
344
+
345
+ # decoder layers
346
+ all_hidden_states = () if output_hidden_states else None
347
+ all_self_attns = () if output_attentions else None
348
+ next_decoder_cache = () if use_cache else None
349
+
350
+ for idx, decoder_layer in enumerate(self.layers):
351
+ if output_hidden_states:
352
+ all_hidden_states += (hidden_states,)
353
+
354
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
355
+
356
+ if self.gradient_checkpointing and self.training:
357
+
358
+ def create_custom_forward(module):
359
+ def custom_forward(*inputs):
360
+ # None for past_key_value
361
+ return module(*inputs, output_attentions, None)
362
+
363
+ return custom_forward
364
+
365
+ layer_outputs = torch.utils.checkpoint.checkpoint(
366
+ create_custom_forward(decoder_layer),
367
+ hidden_states,
368
+ attention_mask,
369
+ None,
370
+ )
371
+ else:
372
+ layer_outputs = decoder_layer(
373
+ hidden_states,
374
+ attention_mask=attention_mask,
375
+ past_key_value=past_key_value,
376
+ output_attentions=output_attentions,
377
+ use_cache=use_cache,
378
+ )
379
+
380
+ hidden_states = layer_outputs[0]
381
+
382
+ if use_cache:
383
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
384
+
385
+ if output_attentions:
386
+ all_self_attns += (layer_outputs[1],)
387
+
388
+ hidden_states = self.norm(hidden_states)
389
+
390
+ # add hidden states from the last decoder layer
391
+ if output_hidden_states:
392
+ all_hidden_states += (hidden_states,)
393
+
394
+ next_cache = next_decoder_cache if use_cache else None
395
+ if not return_dict:
396
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
397
+ return BaseModelOutputWithPast(
398
+ last_hidden_state=hidden_states,
399
+ past_key_values=next_cache,
400
+ hidden_states=all_hidden_states,
401
+ attentions=all_self_attns,
402
+ )
403
+
404
+
405
+ class BaichuanForCausalLM(BaichuanPreTrainedModel):
406
+ def __init__(self, config):
407
+ super().__init__(config)
408
+ self.model = BaichuanModel(config)
409
+ self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)
410
+
411
+ # Initialize weights and apply final processing
412
+ self.post_init()
413
+
414
+ def get_input_embeddings(self):
415
+ return self.model.embed_tokens
416
+
417
+ def set_input_embeddings(self, value):
418
+ self.model.embed_tokens = value
419
+
420
+ def get_output_embeddings(self):
421
+ return self.lm_head
422
+
423
+ def set_output_embeddings(self, new_embeddings):
424
+ self.lm_head = new_embeddings
425
+
426
+ def set_decoder(self, decoder):
427
+ self.model = decoder
428
+
429
+ def get_decoder(self):
430
+ return self.model
431
+
432
+ def forward(
433
+ self,
434
+ input_ids: torch.LongTensor = None,
435
+ attention_mask: Optional[torch.Tensor] = None,
436
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
437
+ inputs_embeds: Optional[torch.FloatTensor] = None,
438
+ labels: Optional[torch.LongTensor] = None,
439
+ use_cache: Optional[bool] = None,
440
+ output_attentions: Optional[bool] = False,
441
+ output_hidden_states: Optional[bool] = False,
442
+ return_dict: Optional[bool] = True,
443
+ **kwargs
444
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
445
+
446
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
447
+
448
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
449
+ outputs = self.model(
450
+ input_ids=input_ids,
451
+ attention_mask=attention_mask,
452
+ past_key_values=past_key_values,
453
+ inputs_embeds=inputs_embeds,
454
+ use_cache=use_cache,
455
+ output_attentions=output_attentions,
456
+ output_hidden_states=output_hidden_states,
457
+ return_dict=return_dict,
458
+ )
459
+
460
+ hidden_states = outputs[0]
461
+ logits = self.lm_head(hidden_states)
462
+
463
+ loss = None
464
+ if labels is not None:
465
+ # Shift so that tokens < n predict n
466
+ shift_logits = logits[..., :-1, :].contiguous()
467
+ shift_labels = labels[..., 1:].contiguous()
468
+ # Flatten the tokens
469
+ loss_fct = CrossEntropyLoss()
470
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
471
+ shift_labels = shift_labels.view(-1)
472
+ # Enable model parallelism
473
+ shift_labels = shift_labels.to(shift_logits.device)
474
+ loss = loss_fct(shift_logits, shift_labels)
475
+
476
+ if not return_dict:
477
+ output = (logits,) + outputs[1:]
478
+ return (loss,) + output if loss is not None else output
479
+
480
+ return CausalLMOutputWithPast(
481
+ loss=loss,
482
+ logits=logits,
483
+ past_key_values=outputs.past_key_values,
484
+ hidden_states=outputs.hidden_states,
485
+ attentions=outputs.attentions,
486
+ )
487
+
488
+ def prepare_inputs_for_generation(
489
+ self,
490
+ input_ids: torch.LongTensor,
491
+ past_key_values: Optional[torch.Tensor] = None,
492
+ attention_mask: Optional[torch.Tensor] = None,
493
+ inputs_embeds: Optional[torch.Tensor] = None,
494
+ **kwargs
495
+ ):
496
+ if past_key_values:
497
+ input_ids = input_ids[:, -1:]
498
+
499
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
500
+ if inputs_embeds is not None and past_key_values is None:
501
+ model_inputs = {"inputs_embeds": inputs_embeds}
502
+ else:
503
+ model_inputs = {"input_ids": input_ids}
504
+
505
+ model_inputs.update(
506
+ {
507
+ "past_key_values": past_key_values,
508
+ "use_cache": kwargs.get("use_cache"),
509
+ "attention_mask": attention_mask
510
+ }
511
+ )
512
+ return model_inputs
513
+
514
+ @staticmethod
515
+ def _reorder_cache(past_key_values, beam_idx):
516
+ return tuple(
517
+ tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
518
+ for layer_past in past_key_values
519
+ )
520
+
521
+ def quantize(self, bits: int):
522
+ try:
523
+ from .quantizer import QLinear
524
+ except ImportError:
525
+ raise ImportError(
526
+ f"Needs QLinear to run quantize."
527
+ )
528
+
529
+ for layer in self.model.layers:
530
+ layer.self_attn.W_pack = QLinear(
531
+ bits=bits,
532
+ weight=layer.self_attn.W_pack.weight,
533
+ bias = None,
534
+ )
535
+ layer.self_attn.o_proj = QLinear(
536
+ bits=bits,
537
+ weight=layer.self_attn.o_proj.weight,
538
+ bias = None,
539
+ )
540
+ layer.mlp.gate_proj = QLinear(
541
+ bits=bits,
542
+ weight=layer.mlp.gate_proj.weight,
543
+ bias = None,
544
+ )
545
+ layer.mlp.down_proj = QLinear(
546
+ bits=bits,
547
+ weight=layer.mlp.down_proj.weight,
548
+ bias = None,
549
+ )
550
+ layer.mlp.up_proj = QLinear(
551
+ bits=bits,
552
+ weight=layer.mlp.up_proj.weight,
553
+ bias = None,
554
+ )
555
+ return self
556
+
557
+ @torch.no_grad()
558
+ def chat(self, tokenizer, messages: List[dict], stream=False,
559
+ generation_config: Optional[GenerationConfig]=None):
560
+ generation_config = generation_config or self.generation_config
561
+ input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
562
+ if stream:
563
+ streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
564
+ Thread(target=self.generate, kwargs=dict(
565
+ inputs=input_ids, streamer=streamer,
566
+ generation_config=generation_config,
567
+ )).start()
568
+ return streamer
569
+ else:
570
+ outputs = self.generate(input_ids, generation_config=generation_config)
571
+ response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
572
+ return response
pytorch_model-00001-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2af9046b25d9384af4b4a3017cfd9df851ec3dc82225ce0f94b55f94671d4f9
3
+ size 9972279780
pytorch_model-00002-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cea4af5d338f4803b369e0eb84598081ebfcf2556d8b739788d623a758cfce54
3
+ size 9947419824
pytorch_model-00003-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd8e270f939069066b659eda1d2e19b94a43d4ef10809b9e98ec2a678aeed8c2
3
+ size 6610199329
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26529802240
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
+ "model.layers.0.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
15
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
16
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
17
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
18
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
19
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
20
+ "model.layers.1.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
21
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
22
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
23
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
24
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
25
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
26
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
27
+ "model.layers.10.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
28
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
29
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
30
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
31
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
32
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
33
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
34
+ "model.layers.11.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
35
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
36
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
37
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
38
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
39
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
40
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
41
+ "model.layers.12.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
42
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
43
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
44
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
45
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
46
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
47
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
48
+ "model.layers.13.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
49
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
50
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
51
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
52
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
53
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
54
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
55
+ "model.layers.14.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
56
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
57
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
58
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
59
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
60
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
61
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
62
+ "model.layers.15.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
63
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
64
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
65
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
66
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
67
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
68
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
69
+ "model.layers.16.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
70
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
71
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
72
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
73
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
74
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
75
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
76
+ "model.layers.17.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
77
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
78
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
79
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
80
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
81
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
82
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
83
+ "model.layers.18.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
84
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
85
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
86
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
87
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
88
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
89
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
90
+ "model.layers.19.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
91
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
92
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
93
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
94
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
95
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
96
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
97
+ "model.layers.2.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
98
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
99
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
100
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
101
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
102
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
103
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
104
+ "model.layers.20.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
105
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
106
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
107
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
108
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
109
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
110
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
111
+ "model.layers.21.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
112
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
113
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
114
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
115
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
116
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
117
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
118
+ "model.layers.22.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
119
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
120
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
121
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
122
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
123
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
124
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
125
+ "model.layers.23.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
126
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
127
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
128
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
129
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
130
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
131
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
132
+ "model.layers.24.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
133
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
134
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
135
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
136
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
137
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
138
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
139
+ "model.layers.25.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
140
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
141
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
142
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
143
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
144
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
145
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
146
+ "model.layers.26.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
147
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
148
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
149
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
150
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
151
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
152
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
153
+ "model.layers.27.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
154
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
155
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
156
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
157
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
158
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
159
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
160
+ "model.layers.28.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
161
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
162
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
163
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
164
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
165
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
166
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
167
+ "model.layers.29.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
168
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
169
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
170
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
171
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
172
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
173
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
174
+ "model.layers.3.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
175
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
176
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
177
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
178
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
179
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
180
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
181
+ "model.layers.30.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
182
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
183
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
184
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
185
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
186
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
187
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
188
+ "model.layers.31.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
189
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
190
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
191
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
192
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
193
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
194
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
195
+ "model.layers.32.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
196
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
197
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
198
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
199
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
200
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
201
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
202
+ "model.layers.33.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
203
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
204
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
205
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
206
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
207
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
208
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
209
+ "model.layers.34.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
210
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
211
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
212
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
213
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
214
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
215
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
216
+ "model.layers.35.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
217
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
218
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
219
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
220
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
221
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
222
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
223
+ "model.layers.36.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
224
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
225
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
226
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
227
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
228
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
229
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
230
+ "model.layers.37.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
231
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
232
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
233
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
234
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
235
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
236
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
237
+ "model.layers.38.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
238
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
239
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
240
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
241
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
242
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
243
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
244
+ "model.layers.39.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
245
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
246
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
247
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
248
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
249
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
250
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
251
+ "model.layers.4.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
252
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
253
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
254
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
255
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
256
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
257
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
258
+ "model.layers.5.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
259
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
260
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
261
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
262
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
263
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
264
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
265
+ "model.layers.6.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
266
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
267
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
268
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
269
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
270
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
271
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
272
+ "model.layers.7.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
273
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
274
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
275
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
276
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
277
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
278
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
279
+ "model.layers.8.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
280
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
281
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
282
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
283
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
284
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
285
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
286
+ "model.layers.9.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
287
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
288
+ "model.norm.weight": "pytorch_model-00003-of-00003.bin"
289
+ }
290
+ }
quantizer.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
2
+
3
+ import torch
4
+ from typing import List
5
+ import bz2
6
+ import base64
7
+ import ctypes
8
+ from transformers.utils import logging
9
+ logger = logging.get_logger(__name__)
10
+
11
+ try:
12
+ from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
13
+
14
+ class Kernel:
15
+ def __init__(self, code: bytes, function_names: List[str]):
16
+ self.code = code
17
+ self._function_names = function_names
18
+ self._cmodule = LazyKernelCModule(self.code)
19
+
20
+ for name in self._function_names:
21
+ setattr(self, name, KernelFunction(self._cmodule, name))
22
+ quantization_code = "QlpoOTFBWSZTWX/mUzwAK6f///////////////////////////////7f////////////4C5duvi2D0Oj1ppVCJ2zQFYbnbsxmq20pAC7kEDb3Z3nWrextY9NZbavON7nveSRqszudmzAGGgkeh0Pewk881e3Tz13kW9YO7uA9AUUiAWLNW2HHWCE005Mdz3jHs1Ic7QNCQBNGgmE000DRNoGjUYmA0mEmJjIaI9JtT0JoaaMTaQ0aMjTTI1TzKMmETwyaJ6k8p4Ke1T0wk2aE0anpPSHppqNM1HqYzVGj0MpsTTUGpoCAAEyAAAmhpPSYowMk9U8mqb0mJtU8ETwCZT1DQ9R5R6htE9TTyRptQeoyHqA0B6g9T1AD1HpGQGgD1A0NPUAAAA0A1Mg00gmhKPU9E2SekHoJ5QHlNDEPUeoDEaBkAHqBoABoNABoAaGgBoAAAAAAA0AAAAAAAAEmoiIgmiD0maRip+qfpR+k9U/QKaZPUepiGeST1HqeU9TQ9JoANAMhoZPU0AAYnqaBoAANABoAAAADQGgAAADTQ0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASJEE0AJo0GkxGJoZNKeBoTCnpNNpU9knqn+ppmUnom1PKZqTaaTTwTTFPNJ6pj1BG0eoaMgwQGkYAGk2gjT0jBqaY0RoDeqZoNEYT1NpsA/+iBrt+OVIiCKqfH7N/e67XZ2Dx9tPHyWbW4gAENNTtyzk+/WdoU604SoXU0JgfqgQxVmzbfdmaFcVxQAYINDyjTKU1FCUUzUuqqptg4SBgwIAHYE4NwQOrbY1bOF26LUVuxYr3Hp4paZXaqKU1UmXO3K+IXn2hURrgAegAaTANS+QBclUN6tpvhn85+uTPCLxzj34YO8MIMg45eRAEy9IYbKxeZTRnTy6GpPLtVGWKKK6iuDLa9wjtSmUQREX6wHfE3JeTVZdoj4Hg/3cHlBdw4c4BdGvigzZsubPr3eTi2hs6tZz3J9zUVm8qH+FPwSx4Tdr6by/OA88iLHk34rWNt7fT7NwqqqqqqqrGMYxjFcdqvY2mXyh42c2ccxhtyvBHojjUlyAKRgbvAB6nhls1wGLTOrfGMBsqRXl9Bl3sOlvafSA7sDrmAQI+mw90af+bvJ8mwjP+RKtjobGNzbfl76iTHMiIIUf9oIoygqSG2NLn0Ys/mZ+hzufu7epmzbvP1t7S0Xo8TKK7q6G5MA8vTgBb7Bf/2kITSLsH7Xmfydz7ahAt4YJbBuAQJI+1M8DLJCQH+UPbv212QWIhcCKhBrR2eryfQYIiIhKE0WtbOQ7OwM7OxtURGbF28NBndi9ejVDVA3dne37uDdzrwINS+O/0AzQTCgUjfCAwkkKFMT4Kr0aV3DicVAelGBesGYoCRcLKq5iBFR6SzOzrAwFWDFVYU2XT1oFaRJk2JBDOwVk1LFZZfwY7tQBYMGdECFA1cLZAg0IlfCTCMgZ4afRQBNvXSuMORVUTxTLSTgMFoUtaGLIr524yIM+INSFFIOHQ4TG5NZbd3Su3Nu9raSLd/ueibSYpAL0D42ZkAtD0pnXrfTxYPBw+mAt1cKPCPmDNMCDYCBiQwmANVhdDjBwsdIKyfH1slCvWbJC4QO8SBxi6A+GEpDBN6UQnPaEvBqFk3TwChKSowEENpyAueDIFs6OxxLRmFSUFpjWgYpECgDgfVBJjhg4GGcI9CD0S3igCrdziS3ZoYHlQE+7AELdvbebTVsdRvrPHCgiAbSYzUN0z0SCshLjaUaREEREQQRHNKAgAS9o0kukdJx0ulaJk0kINzlUYN0wWXLLsmRgSG1BEJNh5sCuVtIybGlKUW29BziJUTpqcA8UCCLtOGU0hH17BYTERfPKhCAwxJqSSSMd+umawlsykXZiKHesslqlVDKEHPzFhIWwJHTfcYCGE9dQK9sKixjNifLkW1iLnyZo57BBx2jksXPYjcaA6Z6rlYTl9ocZHn2URKVXnY/Wsrc5l3aym6Uq7u9eu2szSbJgwhqPqfOR1JCCZl7/AehLVBSIXc9npUk8IDzrRCS9XKMeamSDmFxK6OQDhwNnxubbnQygQb4DEL6oD5qkkG6F03dyDAUJB/awNUoDCa3CmYy2QIsK0Z46BoX1N4kY8aGNFB8WZAfWvaHeUT4gYIjEsZBBARIFAk2jCTxAmpW03GtdW4WCN0bLJiiqY3ixmHAWRqqQKqgS2hlf8mwszkhUy3LDx3GLdo5AHGAgC4BogUAVgH4QM0AGAImwbS6gwANIep0rJIU3hBgaeKAEcnzfs+g/sJZnETvInDcAH5fE7azmr8EyIFx77caxbrDBC64CEU8wCqzAHPgkk4kiPREKYHn2HaoDBWCCrFBrhR+XpeNQkdbzCBHee2hW8EW373k/qd/PxGC2R+IO4vmNEAl1AE0l4bEvmnfd5/JYs5gl9XpgQIS7g/LAK7owBwgso9j0yEB9MRIBjqmkLdG5uED3tICA6PYXe4WItRawAenfJ0lCFupoGvajxuQC/5YQPnwFpgQBMNgBndpgVNJcyw+5vCJgHtWU0EDYk2HsvD8Qkg6ANAd8UQXGH/3X3gXgNDefHyaQ/wd93Xx87hWWtW0kPCQGR+KYiPeMQse27PdNLGwhlz8WJObSnEQyHJw1JmStJXTtIg0ZKEHrLZCXd1ljLGkkxtpsDofXUiBH0LLEM43kb2waJ26KZsJ9sBbxcAqzUgWxzogNFm4vSxjMR58r5Xm8H2+6ItGcNX2AK3GhDIMzSX3YyFsbNG0u0MxvZzGFv19k2E45tXrK+1OKUYRiH2OT2Fs7kqtxMDrANVp2nxreAZg02UaFEsuf6+urQi1PxvNOhuacrStndOnonV3e5Du+Xjp8mjhiHYPNexu7UKSbt0Gs2rPIVVVSFyQ7phtQ0ZOUySoyZA79muzuLBZaLAW20gZIeuJDacErguFE3e70svo0S0mRBMBu33rjqVrNEN9A5PHvOgukEPEgb0tYAMrvcvIXB5ydzJHXQ1n+t7BUI24oJtSCTAUet75rBpXL4ylQ4LGBpbQeQCiOku+8rq90o18ga4WEGBDhvHB0YYd/CDLIMdDh2cO/i/RppcEi3Zd+CCU8OdxAAiOgi5qeghJkUnO6YGZi5LEilo2WhSiEVsU2IK7unV2rXG61Q/LbUqGx72rn2Uzx/q/fzsCWUFCQyAA+XqfGVGvL1kml0MVpjJl1A9vYoYTSatnV1+z2czsdoc4QFWLILHn1S71/r3V1S/fJMgDlXX6DVv8+FeECNi1u8zf8K8r1Khq7twFu5xPfZJT+PLpYUZWgGNDG0Jlq4rsQy86u95xqTdO0TbSGBdDOUSyyGHQAmP5mgNfVvgeY2tPzlKbyrvnaZhgQ7aWeJjzbF4mjPlro1hYjmnWUshKxVsQ6pveK850taANOgIE/aJvr0IAC0g2H2d1agVwnBkAF1kl7IPZc8mBthvlYish4AqABgI9hw2cExRabO+8Xz31+enwlCxSbnfVFlqig3UKGBQiybpEBGQLIxuoUMVYLTt53sY+lPlxSAq9f3lfnVlFmiBFrOhAeAF/0/N6HI6/+rsQ2+D5U5fenadDmtFFgeZLLESwOgWWIlgWFo+uFROhke3lKQ4bf0mLH3XSOgtDGd73hfMwDM2aF7Lonl7AlbiPbV2zY2lvu1Vj7jzlmFYoKieH93wt3fLhBXgYUGJEjga5YWEVyE00qIYWXSKd0ZaZy+vuCQlhaz5ELs9n/pjuFAHpoDCMEEtseECQF+Rk58EyW3nzCdlyCeY5WPItdkDZ4egXmjfZTLSVT29ku6KCGxHbdTBD3z52SxkuXkpoaHyy3t25+JwX5zFdYawDASl7397IB2tunNbt2FygaTBIO5qrG0asQmxEVRGCn26UX6DewTmic/QqkLZjdCTqjQDGlxy4IODucyQlmE0zkwSkR02cZjZcA1MzMczZAf1hfPnZT1IGtWIJGOcpzgYwCGyiNtoxRkupRElCCAgWJcE4igRJEQogPHYVAVBAEYDBkUEBIOSMK3KJNwQllpqWZARLCgMM8TkQoHOSZTDbSrjS6QtkYsQSloWSmQ4BlMjEJuuWh0ERMIVRLbcNDDQalLRQiEoBIUKZaiQpZQ1KoooVlNtjVVGAsG6WkNS84MJcoYIgjBrKaODOaUZG6QUZlCUGKy25MUVYGMWC+95zG4FRE0iyDRISulc0GQJt6m5u8WSQD4NAiDAMD9y0Q4TBGAaAIGe6PfdX9zl9Xginufp+HmPiAGfY8ZoDAarMoQAD9kA2OUJQV3lBq86RzpT8nbXPtqxsvN4YTDyOQgGEarV4Tc5h1yv2Npz+65PJpxO/Tefe5S5U1n8asAC3AQIACrUA5XacxgALbHvUfi9ApR956Do3PCWymCzTo7JjufU9DsGcQWqAFwwZfDzR+m6436pzvncYkARkLKOxX23RuLsQeK067Y/Fq8tB7igBMvb836/03fkV4qZ5YY4pFxADLifQb2iaUAwjesDs8Nhx5vnIw3rZOyb9+jyaYazgr2vbSKuf82URMcyf+99L2sWJHqW/I0PfaMR0KsULcnf9Lx/fJFzattuUwcjv8vdJed+FY1s49FrvJMbRVa82imzbdgSpDhEtleDphWrjgzVu59jsXKG/3f88zolkjqRQUk+Xm8F72190OzfqwfT5XAYbvq8WBzq/B+4rLP8j5PDfiytkicVOAAJ6QOe+hWqqwgfq61qtJ7jrsz89u1dDqsK/9Wur9Po5K1vHsXseRHoyF+LoewZ3uHaanw5S9LCW9Gj8k3e5ObY3NfjabO0cbzotaAPB3XIg+av5zaHst8ijMqapTpVtdwy211QZINMi1UCIHnAB3ZLFDZQuraVlNALggow5ygAhEo9EDHUCSm8+Hhev7eTufm8onZ7pATIUwBEBBUUEPBw/zcrl+pwtDJe2XApoPk8CJjTqtqbv7DYwZWFs/M8EhDcYE8AK8A+GfX/aQkYgSLdftV0Id/5gf3lOuNNC0799E3uYYtpMg6yABaJz5en+HpUfveNBXeYA8Whj8TtZK60F8V863ndv3PwKagCzpXtfv1APjaUgxkGLtptiZPR9vldS2Bfy0pT3RXWJlLCCj+GpAz28S4v0YQrYE7We9WpbVXz7KVTWEtoXM/UPZhYnpzdeokWJdNHQ6JQLxp7bOfci50rBcdOdhOqmyeC7B2rL6rxd969Xxc9L4zMrsqZ0+DoaPeSn8Y5QMLTOLpdvz1qaOO5xT1xPjgKnhTYa5pzi5U+bDcHXzYdxpgAbbhf/e8aBprxka5aM2J3lYXBG5G/r7CunzcPyjz2o79z8eDKkMvdO9WixswXLu3TkpoYcV0465fwUxoxC6L9Zwc+QsLDfqipk3wMSSRkBPM8Bxrwt0Mjr4IWW9Tw+Kw23yTbUyYJqrgNaq7saBKAdzYXMQ6mkrfqt72Lk0YwiZmIKkXUgChISCZMMrwdnjWbJDoR5ZXGxxAX5uRBfHBOk6JS8VVVWd56zxf8v3uR0/zON57e6BDuqIcQDJ7H0q5BNPaWbExYw2Bj4tRM9kB+JfynyyEfR/7ZiPXRFLmwpGGjLF9G6/J65mkUZEaKrUdBZYUxFKqGJL4LAbEfZjLi4GYXhv+x3ZpHkC3YADdMsKeYmfKgtzUd+Y7dVngbdcEFGAL3VqaYfYAYMtY3YKIQumTVXUFTFQyU0bqIeMgV2WOcZFXICpoMvueYVy0mHAiaeyNg1p5/QmSbYgyb7WQdUPfY3QeKc0hewGB2z2vH9t+pvy7B6P21pG+wXCMQHZl30TJonLPhQg8nka+raw1OLPUVWvIidrloKjcLH6/YAwepAoWEykQ9Bw2+YU/N5dbXnsNcPbubOszstYSwQYATYulLN0AHAgwb5t+VfATV6uhICgRgDGUaoVNNLc9ZMMW5+qKVhOyoRMLzJolo17ACLDPes+aoyeD5aIZm46HHKV7KqGX1IGbYEEDaAh0Vj+43wIMep+e+gsP4UEgVjmMAWTPz2XZhQDA6/Vzbk0fK+v0+bNB12LRbfmsufKzRgw7Hp7b+J+N2LqWXdwWTvhQ2rIPjc2cgS2A4Ub7IflPitJFAPyFvbvHK+tXi0Zcbi6mO6HTaIydOeYDmSYUIACAZwJCEgueoJnU7W6WfGdWtl1TdD4WHQ8AgDnmNUD+2YrjxNum3+1R9B+XSiSGrVLcFrVC/Z9R7D8DslIGyMPXbJAFthAMNYs7OdlqPilZtnwtReItC2Ff5vD8mQHwayX/vh1LB+HwoefoZ6LWUKb7WH6D0FmEhEKgwAayAYsoKUCcPepjDQYfA2TMWHoiS1lspYmEi2HdFULic/ucQlrFCCwPxyDeITAUsiAUFggCtZuDuVPLvVtM4WCG6DlrLwBL1JAaQFWuf7/uHZ1WAHEBuz9BMrshS8OhZpwrmYpgUIFoauEJQxtrw2iu9bT1ZLik/F26jhZblz7739qomvexIWc5hKq/GfFAebrnq/23mGuisbZhiROtNdFBDwqCBc2zrTYMfhMPwIF0s37CzzvYKeLjIfQZ3D2N6o+FRgDOkDGFGjCDiy9cJBVMOBWJ1AjDIxTAz/LwSRYuyzhHyDiECf0P53hWshYcMslf0PC0tWfLlUztN1xTxhwgkAudx+IE+NuS3phgEhRBo5lXEG6KhGydUzSU2WphfuFy0VkjH2AIPddbJ679s70tkL1rBEEEEmFgwK5pRCB6ZC5EX7ZCkCTI1pQUDJAwhQoosjBZFAjelFmydnwH9j46Ei5DD9ZaOvgT54UpSh4mD7FR2rjbJjFFdyOauUAjNr/DYBQJkLsUsd2mAXDIMHOuu8ULJhkx21G0UL7fnlqIPfiwdblRpcEaxVjru+6bHpdvj38qAOr1rUACbHrKGDWLFjGCBGYoGREGZBh4aGauRARRTmJdfJBWYoCDdFrBtCgYo6H8NyRIvFfbeTFjxF9riIiIiJABkRljjGMYx1mizcSoJ9AAFqKHXgBBgYnYjs06fFb2fl/bceQ8TeN4h1jrKPd/Pbtl3dl3fnbu7u7u7u7u7u7u7u7u79ZxeoA2gbgjyqd70779v47Lsepzo6y18vJkhQMaDKDNhYbWPpJA6hsD3pzguE4gtOhzrtDoDA3oMbPVBY/3fi0DbkWt7GQwMw2BtpNpeKt+v6KytGxxqCQ8JoLCGKIALFxqwIOeI7fqckjnW8eHjcW3xehEp2SWhvmrtDDdoBSOn6jSjQCgLuhd+EBOwr3q9GbUewJDA4QvH+DpFwt+JbtP30yJTy10KFMLT8MmAGUKkqn3DQHSmTACxjEheIpDhGuZT/WrsHgP+ly7Bsto8UYb2bBvwPRV1O/WaEbmIEMEbQtfphLgUDADF7nayfXs1CXBxYOi1aG36B7rr5EX31tzoym2bTIWw0maxvM3Gs+KAOSMztimS4oGQokBRf5dGKNykDp8tH9chWc9k7/6I+SxG5cZSnx52CFhoDqaZ8wBethxjRVKaRfCZTeBpi6ZNdZFjROy9x6tdgMem0rtuH6wbAz9tKvlhJ0JUP1e+2xVgroJFw8tQxLPdwVnLVMDu+mmfk9b5mK3qMNwiMyBqFaajMIgCDBYUXbdKwwVVhoMXL5YLkI5FFviIkYQTNamuapRILAqCSAYSsIOOVAtAUUrDwBSthRBgyVAM1wBrIQhhTlJKQIwFnj+b+aXuJyerhwx7HxQLofddtH71c6UuefecFIrANhfgkaIt5KL4iV43tMeP17BD8D7Dl8+AQTGQfz/rp3JWOfDodJOcvDAquYl1QQiHknUmAQ3lYpRUtJEUowXnnJnOZjZzdINlj+y7lXBb2uPR6a2E5AC3S6dBaJxYl1qyRXwQ15QflVkAK8AmAwql/n4frTztb/XRXV9J3eXRfv0MuB1OShRrtbrfdudwKxsAYC+QHiNISbAQu46ffUU/Flrw68uJ5L+7p69JjfglHs5PSd0bjADZeFsIWCqy0kQ20m3CskYLPShb0aoDdHoJBUQVEirAUgeRTtUBwAa0INXTIBPMHp9AongtXzSfuWCFQfDtzRuYRVG3WIXUjEg7b2vBZKT4ESq2tTcMyGXlqZN+uJ3CaGHEJB/3Q6/xrGIGIxyzCG5tLlSXx61sy0Bra4IFaYrjF1zJj5JPK/SslbN65uYffnqtyIX9zren+rrSsXVVhq8VZ6DFpnBVlD48AoMeltsyGSZSpdUjR6bM9J+oHRVmhpp2HBv+N4PXeS76ctP4LOLvreBzzyCr2v1K7eBo+dr2gwZ2x9k6EpHd7pNRl6Pv+IgXtj4WmtlEUQxkzWOVcT6jcLrhax5PVvgurz9q7DtdWriVdnpnTlTrQqdvWN6ZNr4OdpMM/T5Gg8irLXS/YOgvhteS49VEj8+IfNiPOf8MfMkUw+lYehdNxKZnNbjIoJiqRY1KVGIOWpRtq4m6GCyiypZKKzWBQq5j8RYJE0NCiyjJmgUmDBi8BoJgMVJYXMF4aGDL2XQ4HDKaRGaGhctNBrShK0bSU1BpFoRaTkkCCUWaDCx1MUXQCaGRhgoqhCHmzrFyZwUFG27KVdmNgbChCbZNAMghZRoXKM0CMEXaUTZswtBpLoCkxONrpa2wL0qn0mw2eV0yXs1MGgGSTcAo/GELIbpoe+8gKSqpV0ZIoIa4UCcM2EdVikuAPuDlU89YsXrb9Zb+Pr/F8NexBBbEwTQs9HmsQGBYPoK6bZKDvj9yyALrlOaMbLpKxRM+njvB4id/1Y1WPm3K2A0BVSlgWJNjYxne6JZ8mZfv7w1Nm3/GFOiwonktduZaRH2loGGhNBUlQiHENkybM8pBim0iaXcpE8dAF4GodlriMfOGH6hHY20huVvSlLDBRKHQ4Y3SyKrmCcy7ZZMDyNqVWWwpS+RHQaYnmEURGCKmQc8ARghpQffVMwK2vz6V97O+59X5foz4jUfN33Z49cKeKObXDE1rNvV2QaDOLOi+R0fl+RM8jVQ7QgNiDMzMgUCLlYO71Vn7X7vF0UcSZX1pu+s+xC4MZXNQCl0/rb68aAY3rOJ/jaw7EOYIIlln6V+oFpwZLOUjUVHfe6pdjXgAqsD219Ri16edZ03hcjePW71C29Wy0nTw5YIfs/Y9sNovb+v8vA1P7beB5bQmvEv59b+BnUs8yqQ5/cLKV0EZRMOGHmpsMrPidWDXTyP3fuO+w/9+kbujeEbdg+n4WXJQBn1kL3Py/M1JnkOu70oufaRPG6bsd6SUhq1TALBZAhKpoyMIvkQGRAzJD+udGR9e+WlVzjlJeqELl+D2smL4vG6BUFpiKHDwqftFBbX+9VV338vNg+5kL11bd1yrZaYZrGW36mrUIRi/MVgrNNITCj++zpFSOrRLE+Prlr3mYOP1TtXvtpOwLP5Kmt+3zZvXSsOXW+ix6mXS5mb1MnTvW0u8yHF356RuzXUyeGiLTe+IvXvKmJrEymIxQT9QMSU8WTHgnJi1BgP/WoqICgO21v9Hiw8IaXJY1619oEj/3cb/7R/nddLm6VA5xoN0t3XY6Hiep4VGnzs/Od0hj8f39YuAC5HvfwvWuOeV5fz820AAGglyrLFDjUrv//M/fwNdsEvj0MrTXrV8vLZfMvKMAzJ0/Sda/28/N0QniGmKhoagYUYMGp8IFDrOoi40L48r/SLxfSSDw9TM4P4vUeHE+iTmchyj7Vmwp7m7dejVSNZx+2Is5jzuf+HmHr2aml3fWein0wnXnxne72A86Cc3hrzXgbfc7lNQiJuGMljn2Y8pgXjrTczIy1teeafy8Tz8vmzBWAAFXfojX/x4Kv/YFNprgURbUBytnsI9/0WeuKmZjrWcumUGQgRDIEUsAwZkQMwPsGTJjpTEw7YAwCs7Oxn2XE+hexXn+z/L7HC65bJhCR3SxMdHngfkGgqJnhYzTGjw9StB6E4VI6SgkdNEdesLFW0cgxeYq7YABEPlMspZSBtZDQYZMvK9Cbu/UzXvja7MLlO4BfVYkMH5dwAfQ3u9WEkCoveLyp86iGmleemxREJQ0NoFyWpMxsNQCuuLGCdP703Uv1a3JeT7vfpxp8J+o/ft+J70dz7dV+1QEcxyT6REE6vsl2+0Yd8ayjKWBg2j8pRTeGhVxiYZDc6/YatrSzsw56wbWzGkp3FLpa8+60pan1LSvb+rcfyjTyEM7yC5BVyZL4r0qVCMZRc+AMHxlyZMP5QQiFATNqpVSdy8i66S7oSIl4APKPMzOTus/KeI8rrY6qBkuRSWT0y7LGvNz4KBjigkR4r0v9/bluxFmxePnvZRhpjgezOiX6bPa5LZkzsaLjmf6NzPP1ZfH9p7j4MsQL0YMETXjeb/5lAYcJWU1RECXppb+33HdO5Etl4xLXPxfV8cGZ43FFYXKVoMFQHssoAIzyiClcZR8W8vqiACqmcw8DAwzLM+FeLFaAYRiJ1DFqKh2Fcs+6Zd6erYKNpF09oZhCZNX4DO1OL94JPGTBXIPMmPjmDb0GlmwFaWG2CUqSjhc20YNd6Wwzu52BklGYvDcMnERi4Yh1wqwcOlqiLatNe4rj8FcXDxqMSsgYP5/FnSoTq2VVKttXQ3Gxq0q0Shp+qCbIAeWxu1Ynpd88H5zJfn/V+v+5/N7nyR7Q+n02bmML7aF1Sg+a32Ud2eQx2a8dQqTABf2SKJgvKADJgAJV8Rd0Wt1oIVj9nr/ZfC7fkbdqnS9R4eIbqH2HVNjOYdggfFeSAHKIkaC5R2rzEzdxs7dDCzizsiB7OluhJplyBBWKXPmS0tsUNnNs2D8zfW/QTSAr0EcsnQ/YPZBD4D0rHa3rkC2DHq+G97XfliTeY63fQow3RQpyKsCFgdUC2sF7aep4TmSDjlnDDpfIUJ3Ne7AMT4D7xpuM+j1hXBxYcyIpO3bvLubMhwY3Lrr6KfLP4PF0tpDjMOew5rBbSSUJPAfRMkDCSBum/B7S97oYaYZS56rtu79Vh408mfXcm6HcL0Qe7fRiqav0GhPcuxMpZIm/WHpICgBUirY8aK56MaW53+L/x+BbXNrjaySqntSLsoHFEiExu5hX7+yaqu7Ss2LrWVpPp9L8fuVDJdVcPqIQRFv/gWlUadkCUYMxFQf26Nlq3czS1/zwLAGILGRazcevp3q9/0O/YUWwXKvQTQghgHliLIIbcY0XxVr/9oV2++gsQ57NkRK084MjYapPJJ6Gd7WONsJRq6iIJo0GH/kO9e74wvERAiMW7UqLI+2obG59Xcazzvdk2UIhBDN4V/KqrwHJ9EpMftxjsugftMee96M9+G1DfnomWt7OmvNC5TP5/Fa50GNfJjieHFJ0mwlIothDYzg3BQyahykpudGZEmgiK9ViiKhI9ypBUuKuau8PitJWe1r0kVIrV4VRDTDa74vSvBytKDcNCzJ66Oq5G+hTTGgbpBMS6pJTOmrIjb0m9HsPvrI3rQhSkRYc1aEmn4+CFS9MpIxTpLccqtp+dpwTDqQfFDvleEeOfwGuSJEiR4QBtGkWjWrKysrJEiRI3Pd252xBk1NTBRRRZZZZZZZZZe4EJvbjqWGaaZgEypipYBc9da7d615Ozv+0TPBMoiPZt+OB7H2evtWBqyXzg9jgyNarCYQHxeABDu8KyT59xFO4fpXed3nMVTnQhwffnGz0DpW+c5RkbdjYgCQgDV6Sk3OZyVhq5u3M66CH4jQq6byDLwIv8D7ipARoPE7/rm7y2+93QALi1QT9F/QCxMDOQkHeUdC+o3NN9GXve/W1Ua/wcVgmxFD1YTuKB+xQIiSdMyXLjSbjWwNfsJH8DqADRWZHIyjHLolbAN4CAMrT3YQqcfwcVf9TtpcgPfzwWRN7XWJzrS1KzOVWXccRQ+9TusY64JEtzfyHJnKixBwcbgCBAgQiIiIiiqp3Pje3Y4/hFGgiIiqrTGMYxtsZSR3dlixYyrLVZTH79fh8yNTc4ezofRU9vjHOIATEYEQNb4IG7bzkD59jIzRNInn9c62cuu1ZkYpfHu7uokt8nd1Hc6ApKjEt2qqbEG2l6oUPERCkrFLjmUay3EPnj2vUe43MqIYdrm3PZT7WrLfnw7y9is1SEtuI3OsO3EW80l8imWVq1Yje2a7qnbRVNK7eZSUzwnE6j9CLm24oqbZ35UTokBKroRjwJNyCBEACLMRjnOy84O5zJREd0g8Xa+y0W7O3tcCI+46EvAjDUyqYnOCQAfEhYjlWVo9HFVl0Fk1g6rWywYXLyW9gmyJHKcFdans6g078Q9ryUjaXacP7/PvwauCguS3VK61FsSTIa5RZd+GJqurSiskfDyz7d0Bd7WxYHfJfTrpTamo87sRYMCEdyYaUdCzhu3027ABTtQCAnwKi9q3KK/rIpk6zEjGHEvADnOwuJ1nOvPr8XZNswFPZ07G/LauwBMG1tOWNT76s7Jw1OxxW1BImaJT6XUIQ/1VPRP6UZLBjAVwit2h7xS6TLbCUnzPvqOrOfrbFh/ZAFnP7jW/zIMkMNMUk5C20iKshen2HLTcv3ge8jBXRbUso7c88qlYXXozqDXWcHg21XXWzupu9YmNN2aY8W/tJ3ru1cs4YtK5b/YBitp4WYoOvZCpCIC0Ju2+xw3MABgLVFBetW9KA2pqTQMLlkKFfMNANN6+JBLD7W6/i0AiMi2fIgslxtlD+bdgBbDk1FxvsbR+npU23xUVtnBjvadzYRwqwnvWSPbrgxgFM01Y2yuGIJh4HBXDlmKSUokWxg39HUAD4u4+D8ivAiXNQkqnkKxTsDkVM+u/s6rx/w/VPZ1yL9nnzJm2YZ9Wl+9izPDiRnfzWU5Eo5duybQnktKu3b+J3pVuuBmmnebBXfiZtkpUjLRKvtuhD3GDAd3t8lPpMQgVQmkICwxxqhUhLQMPWxbwjlswPn5rmN8Fi0j25H0DYQMgIsU4+OvNxfxINfZR+ndisEVJrn6M1cgs+qsqW2AYv5gIBUG2nAI2sRJdPp0pkIFsJQ9DC0Exajuxg+5pGLShRHi9wPxlNGkITynkwYgPc5Bjm1ceZiqsTuXbr2ZrcqBszMKehW3A7cYHig2nqO46ef4275H+NjUxZ7Yxj0XWdJ+CBStOyj3EqZrP6f8049HRTOibY6aHBkysu7Zy/0S6gyH3v1st5NJVth4dqmwuarDr5z62e9OpPUqH6te3WRJmOs5XNggNsBgGGgo4SSlh/wYAXsqj3aHIiODcmQbAbQltCKcIoU5klptJHQ0l2P4Tgjad8WBWp9XyPm/j3QYeU5tV+GSJ4bCaYcK2PA4Spq7rr4bGK2La8fhcB+ZpbeVZdDoKcxwCBZQgvQmADvnSmoonhrOe7esVg+7JS5aUYwMCekjlC6YlQHUxfh1evKIB8OGrutYZ4YX41h6Jq6hHuvnBsJnjhYHY81i95iJiJTU6/T7VS3gB1qH0ACm35YBe58z7ceWShP5goYAvCcHOTphatcimJSi7e8cPtVNlLBeanev47WzlgmaIlrfg8PQALIwuyc+Ce7PTEdI6IMaL62wH5dzYaANEsRgmxYif+uWKupAwqrJ4eXO3BFsHrOiYQRSnB5GwA01qir3ZWamHuBtKIrzLS3by/XYFMY2AJEnhaR7ycHZFV8q2AKplu2J5dsQ24LL0qZisABXaOzHlwBFOQv0vOYWldhDsVt5f3Y4pEAsNwPQChB5QmJB9EYeqbx1Mx3plDVGMY02NMYxjG228wkHXLQBuctwIzDl0DNb2d3Zr2eV57mni8HxuT3pPieEQB9MdPlRq2ASoAJ5D34BKD2+jwhMSM3k9e3pXf6aOC4LK2IgIYJ4xQMEhhPzy+0BRQRAMTrG+uVq2FlPAAWvayCMW6HdOctiAZvYzmADuOlcPkF5QWJAaMRsb5I0Onl1kWwDFstny1tu3cPUt/f34gagGAiIG0z+LwJMwuBjAAO0oXQ+j2OhzkkDWu/H1iOt9LZS2d9xud3NjEIOUBcEGiLbYAIhuk6kG3QiZ7Vx448qOR0823ux6gaDAo/m7VGENCDY55QyihE8PY2c3FAOq0eB5VrR2rVOD8Pk54g10gYFruoShyCA600IlGADNkNWFwSUq26fo1MfJozZb8ivAWwKtUCnsIy1VVc6gilxgZXuOpIn5NqpQ4t1rnTCc+zVGQ8dLhuE4NDF7wA+sXOKNy3yzCWV69Yg3C0AUAEgSDmXcoIVu+dFgcdgdaEhA+iWl1AC/p9ikx5Lmxupjb3zEXwOwav5pXeGFu/i1uQdRtu2CBnIi7j7vIXJ+0+JkKDrtuikSysRrZuAkIPGGIXa2KOvhm+tzKtliPPcIGhgwSePz0mjUO5L7zzmcZMHoTM00cmhmTJXLHXXVL0wJj4s1MzRHFFiZHJnI5xbqYKxtqajjQWsuDBeCnFPf3bjFXVC0XXPfJZnZvcUOvlJ5TfVc9np7+YKcF8Pr101cACqIsDSQrhevDLMRutoELrdyRd4yc4EBhnWVGVUo4LsLWMYimrKjHNShUXacMGzWd1rteL0aqM9Wd9vU8jWwVgD0CDq0ypYdiu5V1wDsEFjDwLXJ6pe46MvOgOONLlAwPQwQmNUX+2AdnCCSJdjtaAefC8AY7bANwtVktFIQWVBQ95dSmjz8VnKFc5xsXgOQl3TQHPvghbPELlyOR3/IjaKbR4oXeqF4EjmEktr0SghMIXS60jhlBQIfEIJnyehMgiETwigxDpiHows1RgnEalhk2EzYwRLmRwajUmIaCFSzCXWStGaaJgaMaFOidK9crUyN2ZuYmDCMxbjQvOVrOaRTDXXVeCjhum+v9g5xzwDtdCQ0k+kA7IgR/IB4DE2B6gEv0Dv6l1YUCwQl4cgIQLDp7+vyQ0Ua6AogR/cA0tRku3sTszsBxdKvDwb0HSuapgWAtRzrmM+GLTWgg8og8IOyt6ZvFLTvQ6TdIU4jAZ9qJLorPPx8ToMIzve9bunjAzUZTwZAuejvlIVhEDGHZ43P+c2vnuH0s6xLjGN5IxE0xoW1w0CkEhDEzZIIIKKKJQkS+HFVRzrtPvD4ASgRgCszCJ7egCW+IZ1AZrFQIbETEL8gYz6s0SYtQwYi6Qsmdq1IQVCNcDQEDNHPNnw9vKmss525+DcQrAWHAQARzWHlAGPJFvL0qtVnM2mDSOxfDb56lUUmGI9SmNfCBxBRJtxwA+2eJCOmpSpXLFbYv8diZyMpTv2LEbyMNcTJr20IxsYzUrvRbyu5dvYHUZsRs8gfCLXUEVYi8a2a9PXF+ZtLPx0ZOLRblX8XTa0QJJSoa+VKRIKD5RCmFKYOIiBoFAUCXYIXCCWZKNExSIoiMUmCpS01EkRLAsoE0NCxCz8oQK0iCYNZrgS0sWA4zJgpKMgxYZxIN0k6OoboxHmMgmKyNy3rUrA2BW11g0yU50ArBdUNYm7rW6l+FmQDmsfUcr8Nxpt6ME1pzmPW2YuvyqQA1FEqGKaOFgPS4YwF0qjqJ96aNghQyxO4ETMPCpx6cPhE1xsRksh7qapVjAG7QQVa6blYCqhJolWKylASeNpfutZRkWEfehrAM1hps1M6VN9y+8pnOeOL3eSrvGKkr3kEDbExtsYADtYMAhLoFzWdZo6F3T89cLurlkYDQ8iWVgjINJHQatNc/BZZPPYhX7J3dX5zJTnZ1pJIV4y+k2MF25BTUhIvz2okmED6ax7KgYdJtMkMMjHiBpMVmJIippQbqyHkJreoQDGrZe8QH4qNpIBqEHFpVTrJVwkLCu5ds3+pbccosPAGFjP4J0AB15EXRr4rcAbXmibqr2600yb4dM8VbMHACFOCBZhZIxpWCMkDUZIBUQoKpooWCkAnBzOK5na/LqSSLTATYIaabQCteZkFlqs0bDPpuWAcNiRn6GWSnwrsatNVFIK0+WUGVX3p1UghXmamW9amFzoPHfP2Z3WLhW9ZEaq0DQiqOJyRC17MYwQA84eUDjyR/GOBNpNoO1pV6NwwsBZoAgBWz+M+YS5GC+Su1IEB0A5in0LwPQxXq7joeDPBdd3DzF6z96RTojxR29u8vE3GnO6jAa0MBmCuoxyYl/SDsbSpYIlMINttOUZndGWJ2JgBs8s7bw1GhnALOxFBnZayRRjt4bSvH+Ma9WNZSaKBoUDtDEQNIMt5XAZJIvEFZSahWUgL7ADIBAjZYJVAK8NHljSCRbLZdxbuCkFfrZVirL+GkBWYaJFCoglTaEWtiguhCVZNjj+c9eMUMbOVJQmcHOmKmRIKboAMkAbohUflNANgubKuhTXDGSlSKY0PetmdL+7bQoIJCVRY+osfasgH1NADQYBBoYd+dccoSIhapDyYkRkhkYGAZDWCMlJReDHnRJZKAxUYiJmPGYriVoGAkdW2QI785BQQakRBFiFEknMOMGpw8jj8a7sLaWrGrZ5gDnB2Ys6AFHfczh5BvVw8R6n1P4QHEbDeIf/i7kinChIP/Mpng="
23
+ kernels = Kernel(
24
+ bz2.decompress(base64.b64decode(quantization_code)),
25
+ [
26
+ "int4_to_fp16",
27
+ "fp16_to_int4",
28
+ "int8_to_fp16",
29
+ "fp16_to_int8",
30
+ "int4_to_bf16",
31
+ "bf16_to_int4",
32
+ "int8_to_bf16",
33
+ "bf16_to_int8",
34
+ ],
35
+ )
36
+ except Exception as exception:
37
+ kernels = None
38
+ logger.warning("Failed to load kernels:" + str(exception))
39
+
40
+ def quant4(weight: torch.Tensor, scale: torch.Tensor):
41
+ stream = torch.cuda.current_stream()
42
+ num_row = weight.size(0)
43
+ num_chan_fp16 = weight.size(1)
44
+ # 4bit
45
+ num_chan_int = num_chan_fp16 // 8
46
+ qweight = torch.zeros((num_row, num_chan_int), dtype=torch.int32, device=weight.device)
47
+ intweight = torch.empty(num_row, num_chan_fp16, dtype = torch.int32)
48
+ intweight = torch.clip(torch.round(weight.to(scale.dtype) / scale[:, None]),-16, 15).to(dtype=torch.int32)
49
+
50
+ for j in range(num_chan_int):
51
+ qweight[:, j] = ((intweight[:, j*8+7] & 0x0f) << 28) \
52
+ | ((intweight[:, j*8+6] & 0x0f) << 24) \
53
+ | ((intweight[:, j*8+5] & 0x0f) << 20) \
54
+ | ((intweight[:, j*8+4] & 0x0f) << 16) \
55
+ | ((intweight[:, j*8+3] & 0x0f) << 12) \
56
+ | ((intweight[:, j*8+2] & 0x0f) << 8) \
57
+ | ((intweight[:, j*8+1] & 0x0f) << 4) \
58
+ | ((intweight[:, j*8] & 0x0f))
59
+ return qweight
60
+
61
+ def dequant4(qweight: torch.Tensor, scale: torch.Tensor, input: torch.Tensor):
62
+ stream = torch.cuda.current_stream()
63
+ num_row = qweight.size(0)
64
+ num_chan_int = qweight.size(1)
65
+ # 4bit
66
+ num_chan_fp16 = num_chan_int * 8
67
+
68
+ out = torch.empty((num_row, num_chan_fp16), dtype=input.dtype, device=qweight.device)
69
+
70
+ blockDim = (128, 1, 1)
71
+ gridDim = ((num_chan_int + blockDim[0] - 1) // blockDim[0], num_row, 1)
72
+ if input.dtype == torch.bfloat16:
73
+ kernels.int4_to_bf16(
74
+ gridDim,
75
+ blockDim,
76
+ 0,
77
+ stream,
78
+ [ctypes.c_void_p(out.data_ptr()), ctypes.c_void_p(qweight.data_ptr()),
79
+ ctypes.c_void_p(scale.data_ptr()), ctypes.c_int32(num_row), ctypes.c_int32(num_chan_int), ctypes.c_int32(num_chan_fp16)],
80
+ )
81
+ elif input.dtype == torch.float16:
82
+ kernels.int4_to_fp16(
83
+ gridDim,
84
+ blockDim,
85
+ 0,
86
+ stream,
87
+ [ctypes.c_void_p(out.data_ptr()), ctypes.c_void_p(qweight.data_ptr()),
88
+ ctypes.c_void_p(scale.data_ptr()), ctypes.c_int32(num_row), ctypes.c_int32(num_chan_int), ctypes.c_int32(num_chan_fp16)],
89
+ )
90
+ return out
91
+
92
+ class QLinear(torch.nn.Module):
93
+ def __init__(self, bits: int, weight: torch.Tensor, bias=None):
94
+ super().__init__()
95
+ self.quant_bits = bits
96
+ self.scale = weight.abs().max(dim=-1).values / ((2 ** (bits - 1)) - 1)
97
+ self.scale = self.scale.to(torch.float32)
98
+ if self.quant_bits == 4:
99
+ self.weight = quant4(weight, self.scale)
100
+ elif self.quant_bits == 8:
101
+ self.weight = torch.round(weight.to(self.scale.dtype) / self.scale[:, None]).to(torch.int8)
102
+ if self.quant_bits == 8:
103
+ self.weight = self.weight.T
104
+ self.bias = None
105
+
106
+ def forward(self, input):
107
+ if self.quant_bits == 4:
108
+ assert(input.dtype == torch.bfloat16 or input.dtype == torch.float16)
109
+
110
+ if self.weight.device != input.device:
111
+ self.weight = self.weight.to(input.device)
112
+ self.scale = self.scale.to(input.device)
113
+
114
+ if self.quant_bits == 4:
115
+ self.scale = self.scale.to(input.dtype)
116
+ rweight = dequant4(self.weight, self.scale, input).T
117
+ output = torch.matmul(input, rweight)
118
+ elif self.quant_bits == 8:
119
+ rweight = self.weight.to(input.dtype) * self.scale.to(input.dtype)
120
+ output = torch.matmul(input, rweight)
121
+ if self.bias is not None:
122
+ output = output + self.bias
123
+ return output
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": true
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": true
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": true
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": true
29
+ }
30
+ }
tokenization_baichuan.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
2
+
3
+ import os
4
+ from shutil import copyfile
5
+ from typing import Any, Dict, List, Optional, Tuple
6
+
7
+ import sentencepiece as spm
8
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
9
+ from transformers.utils import logging
10
+
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
15
+
16
+ PRETRAINED_VOCAB_FILES_MAP = {
17
+ "vocab_file": {},
18
+ "tokenizer_file": {},
19
+ }
20
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
21
+
22
+
23
+ class BaichuanTokenizer(PreTrainedTokenizer):
24
+ """
25
+ Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
26
+
27
+ Args:
28
+ vocab_file (`str`):
29
+ Path to the vocabulary file.
30
+ """
31
+
32
+ vocab_files_names = VOCAB_FILES_NAMES
33
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
34
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
35
+ model_input_names = ["input_ids", "attention_mask"]
36
+
37
+ def __init__(
38
+ self,
39
+ vocab_file,
40
+ unk_token="<unk>",
41
+ bos_token="<s>",
42
+ eos_token="</s>",
43
+ pad_token=None,
44
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
45
+ add_bos_token=True,
46
+ add_eos_token=False,
47
+ clean_up_tokenization_spaces=False,
48
+ **kwargs,
49
+ ):
50
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
51
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
52
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
53
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
54
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
55
+ super().__init__(
56
+ bos_token=bos_token,
57
+ eos_token=eos_token,
58
+ unk_token=unk_token,
59
+ pad_token=pad_token,
60
+ add_bos_token=add_bos_token,
61
+ add_eos_token=add_eos_token,
62
+ sp_model_kwargs=self.sp_model_kwargs,
63
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
64
+ **kwargs,
65
+ )
66
+ self.vocab_file = vocab_file
67
+ self.add_bos_token = add_bos_token
68
+ self.add_eos_token = add_eos_token
69
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
70
+ self.sp_model.Load(vocab_file)
71
+
72
+ def __getstate__(self):
73
+ state = self.__dict__.copy()
74
+ state["sp_model"] = None
75
+ return state
76
+
77
+ def __setstate__(self, d):
78
+ self.__dict__ = d
79
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
80
+ self.sp_model.Load(self.vocab_file)
81
+
82
+ @property
83
+ def vocab_size(self):
84
+ """Returns vocab size"""
85
+ return self.sp_model.get_piece_size()
86
+
87
+ def get_vocab(self):
88
+ """Returns vocab as a dict"""
89
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
90
+ vocab.update(self.added_tokens_encoder)
91
+ return vocab
92
+
93
+ def _tokenize(self, text):
94
+ """Returns a tokenized string."""
95
+ return self.sp_model.encode(text, out_type=str)
96
+
97
+ def _convert_token_to_id(self, token):
98
+ """Converts a token (str) in an id using the vocab."""
99
+ return self.sp_model.piece_to_id(token)
100
+
101
+ def _convert_id_to_token(self, index):
102
+ """Converts an index (integer) in a token (str) using the vocab."""
103
+ token = self.sp_model.IdToPiece(index)
104
+ return token
105
+
106
+ def convert_tokens_to_string(self, tokens):
107
+ """Converts a sequence of tokens (string) in a single string."""
108
+ current_sub_tokens = []
109
+ out_string = ""
110
+ prev_is_special = False
111
+ for i, token in enumerate(tokens):
112
+ # make sure that special tokens are not decoded using sentencepiece model
113
+ if token in self.all_special_tokens:
114
+ if not prev_is_special and i != 0:
115
+ out_string += " "
116
+ out_string += self.sp_model.decode(current_sub_tokens) + token
117
+ prev_is_special = True
118
+ current_sub_tokens = []
119
+ else:
120
+ current_sub_tokens.append(token)
121
+ prev_is_special = False
122
+ out_string += self.sp_model.decode(current_sub_tokens)
123
+ return out_string
124
+
125
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
126
+ """
127
+ Save the vocabulary and special tokens file to a directory.
128
+
129
+ Args:
130
+ save_directory (`str`):
131
+ The directory in which to save the vocabulary.
132
+
133
+ Returns:
134
+ `Tuple(str)`: Paths to the files saved.
135
+ """
136
+ if not os.path.isdir(save_directory):
137
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
138
+ return
139
+ out_vocab_file = os.path.join(
140
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
141
+ )
142
+
143
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
144
+ copyfile(self.vocab_file, out_vocab_file)
145
+ elif not os.path.isfile(self.vocab_file):
146
+ with open(out_vocab_file, "wb") as fi:
147
+ content_spiece_model = self.sp_model.serialized_model_proto()
148
+ fi.write(content_spiece_model)
149
+
150
+ return (out_vocab_file,)
151
+
152
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
153
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
154
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
155
+
156
+ output = bos_token_id + token_ids_0 + eos_token_id
157
+
158
+ if token_ids_1 is not None:
159
+ output = output + bos_token_id + token_ids_1 + eos_token_id
160
+
161
+ return output
162
+
163
+ def get_special_tokens_mask(
164
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
165
+ ) -> List[int]:
166
+ """
167
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
168
+ special tokens using the tokenizer `prepare_for_model` method.
169
+
170
+ Args:
171
+ token_ids_0 (`List[int]`):
172
+ List of IDs.
173
+ token_ids_1 (`List[int]`, *optional*):
174
+ Optional second list of IDs for sequence pairs.
175
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
176
+ Whether or not the token list is already formatted with special tokens for the model.
177
+
178
+ Returns:
179
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
180
+ """
181
+ if already_has_special_tokens:
182
+ return super().get_special_tokens_mask(
183
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
184
+ )
185
+
186
+ bos_token_id = [1] if self.add_bos_token else []
187
+ eos_token_id = [1] if self.add_eos_token else []
188
+
189
+ if token_ids_1 is None:
190
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
191
+ return (
192
+ bos_token_id
193
+ + ([0] * len(token_ids_0))
194
+ + eos_token_id
195
+ + bos_token_id
196
+ + ([0] * len(token_ids_1))
197
+ + eos_token_id
198
+ )
199
+
200
+ def create_token_type_ids_from_sequences(
201
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
202
+ ) -> List[int]:
203
+ """
204
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
205
+ sequence pair mask has the following format:
206
+
207
+ ```
208
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
209
+ | first sequence | second sequence |
210
+ ```
211
+
212
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
213
+
214
+ Args:
215
+ token_ids_0 (`List[int]`):
216
+ List of ids.
217
+ token_ids_1 (`List[int]`, *optional*):
218
+ Optional second list of IDs for sequence pairs.
219
+
220
+ Returns:
221
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
222
+ """
223
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
224
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
225
+
226
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
227
+
228
+ if token_ids_1 is not None:
229
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
230
+
231
+ return output
232
+
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7d1ab69d25c74644af5c5e4dcd1cc6e96d33783dbd257b6bdea55b643c72813
3
+ size 1136765
tokenizer_config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_baichuan.BaichuanTokenizer",
7
+ null
8
+ ]
9
+ },
10
+ "bos_token": {
11
+ "__type": "AddedToken",
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": true
17
+ },
18
+ "clean_up_tokenization_spaces": false,
19
+ "eos_token": {
20
+ "__type": "AddedToken",
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": true
26
+ },
27
+ "model_max_length": 4096,
28
+ "pad_token": {
29
+ "__type": "AddedToken",
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": true
35
+ },
36
+ "sp_model_kwargs": {},
37
+ "tokenizer_class": "BaichuanTokenizer",
38
+ "unk_token": {
39
+ "__type": "AddedToken",
40
+ "content": "<unk>",
41
+ "lstrip": false,
42
+ "normalized": true,
43
+ "rstrip": false,
44
+ "single_word": true
45
+ }
46
+ }