Unit 01, Model 01 - LunarLander-v2 PPO MLP Policy Architecture
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO MLP Policy Architecture
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -8.84 +/- 95.05
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO MLP Policy Architecture** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO MLP Policy Architecture** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc4fb58b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc4fb58c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc4fb58cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc4fb58d40>", "_build": "<function ActorCriticPolicy._build at 0x7fcc4fb58dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcc4fb58e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc4fb58ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcc4fb58f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc4fb60050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc4fb600e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc4fb60170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcc4fba3a50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAF/PmMaZZG04jqhnuxZiBDj8ACrcdrCvvT5JxYpe64Ky5bOUQruTHaNiIRfNHbni1+4ZH0uXgun/cIoOPxwmdcBH9gFd79r5P0YI1UeH0RGI50FL/hISxm+81U7B7qkeIfrizqntFRp66ZLQSE7aN/REiUWN+a0tfORsth0K0A6goPu36S/dVu3pKbFz56yiu8Es67Tf4SOunKdHqsIhxob5aJrmqrD4A6fdWDhJgs+A9rkyAiyQDfJytreDHX9krw2z2IUFBGA9nEsksHErm+HDOhHOB/wPdYDJdz2UG5WmCcZ4JZQAhi3cWVlH6jbdzMUfVOI5RQDBvGe/tfowyDUPK9kDztOU9Pml9qDbJzPM5VXtADUVdxnde1Ow51TzNR43nPtOWSG3MqqqaCQ1JmrFblCYHFZjAU3ak9aEih8bG5LyyMtU0czk68f17Eo9mopn0TZG/Y69G/jjnuWqYrtXpMQ2zuoG6F6d8lBHjyWmkpspYlqwJ8Y20n7UO5LPx6DRFTC5ZJxyK/C0qPmrqz13WYVLfCJneqHPweurBDmzs3hCV6I7N2TpY+ibayIP16K4ujZtiYdBK1IwkInO0uf16hfbQMc+zD/9aLM7lhiX+dLylBi0rW+662WF7zGIAdYPiO8QMKox6QGqUKUcq5hzRlAD1LpkXGovEQj6HlhT8AdM7fORZTOw+wJ0jO0b1zmmSE/YXWMh7+lTA/Vl9FLKY3CBr+eY0VuXLTH1W2lFkk+USC1gcPkGc33xmOHJl0KpKdKauAXyholMILPbmT9zb3JlGJ7f3YlI7xfdOCnPqyyJXXkN5LIupfNzeL3Y0OihMmyiTJfaPLH69Dl7ob74l2DTf0JWpeXC3/3xLxzzoQ2Undt2KDNXRI7Go3V8eTdON7puK04tMpEDM28QQe2qzOrUdtR9yRVn0zGE7WOlwI0FwsM6/EGd8Gvr16CXPNVDaCx0T7b2YwV3soJI9ZI8f53D+oP0CP6JULOzHdxVKWmZ8gKHYu8jWVqDnzAxuQ89KFW3eCUnleXNxcxjTz6YZXSUMTQdkIcCFsxHaoU+1/kRlgMlKV5HFvGg8KG27oaIx7gZmudewbc7f+idvMJNHg4SijNkMgChSvoVhy2Z17HLoRpKvyaigaSw653lxQHZO7I+Np7/yTi2cXSTSOBzEMww0pZ5P2vpkPd/GJqbzEpXVwN/41HkaDYXxvlEJ+/cAnkCmmt9jKmrS9OZfPWcbvNEpXn6cjz23RZ76C1yQbg2SvE3s550vKX6aT6syp+ENlvg8C2Tntcw25hbtEdbjlvbDdH4yhROHiw8OlgECSPTnVwHjuqk3fQ5kdCKLvpuLfeKfnqKIGuhu/1ShNHmcv/NrQIlXQdmciHv6sPWZhs3Wppna1l2G2KFdFXH2haeTgFuLYaR6FDP4nYthhQS4q29AR3rGap5WSrjhDkwWPdfbkZUI6z8QqNIqppgUrrlkeS+9gubTVV5AnfVGtQSseRIsS4/jO7ntFJBrqOlOJjAepIT+JtVaIHFwivMPEneQN/8tpPoaY5T/qJY5c4jYjIJvrvBGu38f34DHVXMS5BUq7urwIA2XDPPUc6sAuy9bajPzXffca1hWBYjXpCSCdDb+wnx79xbyHFQfTA7L8Br9q1uF3DDJfYPmtZPUKbAhwXzI9AcOFxZ8BeJ3P0PblZiWdKiib7e8m2KTEe1rPF05iHOvIG463VEpBXkad7b6ieHoDBWT6ywLik4mERG9tGa/FK9KYoqeT9fYk+aY205s6sqriQq0y1xa8RpZZV0hhuVkTgJW17mWkMYUkc6P8oUh2ZU9HqLao94LuOZf69dPZW4Y4DhUik59fp91tGhgN6h9R7t5XabX3gsmOdKRRjbVUKXkuBb03w8djinuhAcRQal3TXnTTxmcybI+7cHfh1fnlYqIe/fnZL/D6BIHGvpEDzcSZPiP/JJPncXwcOOO3BXkOz/4baYIiTzdOAMW70zIUYLLF5joShCWseR28nJkfrT9dNydsexdMuedKaU3YlwCnhUbF8mOtAP7gqbHFcszcjJQ9Pc7y2G4Opf5wFOBRlPRmxju/2ESTp9b1duR4cNuaZCvzYquSB+qpNZoOqWDLzDNR7XxcQLMmGf2LDrZ4yvj3a26oRNcoHUajruvJ9nk/xBfMdXELwgSTRK89miUFCfV+oy2uBCw4XHEyaBteD9Z71gOjbgtygfIOsV+g0joXw4o1P1W2gUp7ajbw0CydmJD8s6oxkEyyKy4XR9ei7/ye+J5Ihm1EhEmUHF3iryX0j33cKVBwiwwzmHRApQBp46kouM4PqAWJygRXkzDxwsswP7FpgCljMNphlM3BBz9MgGqtNlV3xGV67BcNPhqoIXqUuRI3GmzE8EaSd9Jb8em/N3EXXNUkt8pYuG87fCGuyvqGTEwvzja31BSmkC037D9uagDTfmRV/mtFCvKc0ztuDPkmOaugu6S3sAP7Qh9gXnJcJuPh65ViMu7hbH/jTcP65x1EBYmj4ftB9XEtVrQm3nohxfGgHLjzU6/KO0iOKcbBKvltrKvQQm6A9ABFM8reKUmmcsDAw5gtdKuHqsQLqo/A4T2lAkaQxNPW0XSEgMrRaxo3Egih3pZIvHkfAFBYYPWRjWeaLLn1Ttb3JSFFxEqA25AUfZ/nWj6oUQlwtKcINrUQrrhyOr/mI/fkZPD/Keiqf0oJ4NpNMdMrkjAQywW69Itcx1u2ZbfdbD8lzhbAixTRcuQ+EaS14tEBRTvSZDSLdJALQQ3E7rOttcLRUTojdjOKZ2IxcJO0gmkrIK0AN5c2zoN77Gi0qG2tWHSU+6MCf9qKmL7QaF+Xnrbw1UhZZxh4Pser4yFOncrmaaVmUg5UHg8TVD8c2urCBI8MLmOpBZVNcrqXwu8FKm0ozs3+/aWAslcPueIQJ4tV+y5xWvPswZ65UcXuq6Kk0r6bBGckF40EqfwClFce/x6uk43g7/YFaEt0vNjzjKASdw26wmNIa0CxfhDGZXB5TdN6lljoK3WRjUpE8Z6kQ4MB8g0Nac7VqsRe0mkOZkLfGmzFyx4gmXodeI+trfXLbBgg72H2MCbbb583LfY4savD8hQGq14hDpgTA59FOWWhzSwRCR6M+IEs2A8C8EsCEpYvFCWFPlgl0Dvy0+l7E8Gc9OuHAhn+5v4HOvn1cypRcdTJxlsbjss52IzyyerBoUOwIAQyOtHgCr3BIF1GThQNZ3TyDwvuozd2bTrn/qREnmBG/HZxtIgJvJ7R9y4JlMoUxqORlNyP5ZpPw3VhQ0eKKaiCsEGHk4AOvrfCB7gwxtDv4W447kUJRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsYdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAmvD3dgW+85K0IX0bauzFKszgTeUedJr0DeORpgUr0RjoVoiArnI+Bo/85V8Z6G80VbVeC2ysWCSgfkGYhkKn7Ksb2Hv/xdxf3WDg93Y4SUJCcYsjmQkg0NhYbohTUxmPQhgW2MTaOXUPlCXXdJVu8SsFKoNkGghloKXaV5hyZjv5R9zDyBYKst1P5jbOtl+6QeOlGS+bo4xp66DjoyJgl/SWA3sw9RJyN1hONBXJ9QEaVuxN7xZhOJ3XaMtIpgl17Idh/zUBX9Eengrluxa39rTdVtWKp93i4r5jGNCUuZY0VzhbJPK9CcG/Zykh6jv+DEHuRVh5HFUQPOkKzpb3+C4YemKcPPAo5u6yDKjBnVQY7dfhkJzM5t+JGtx7f2L4fGDtKnXxxjMjNkFQLcpbPUIpAbI8IaDrGu8Bx5OFkhSL31zKB4OcGUnvaJJm+zihuJekZsluokPhGqxmhnfQDQcIoXFtlO7JeIeziIMfuqlbKhUA0Yc5yNfWeOai5cZCPuNhJLeLOuRFT5FOSXfe5UNhkUX2rIjQ/tf8raZ61SnwBLFE/dCnko4TORPh80gHtBZT8c8XtyKFb5DwOtVbERCYkR+jti6qY4rnYSyNnlCEWNqUBvYVjTWrtM4s4xxZ0RNsJE8rikI+5q8+yhEaypDQyrX9PSvILabFUsjhR3pDCn2iIVZGei0phP3Oeiqh4HO8A1xZt3NjDv776VribIMqncU0BbRV+W6FP8Nge1LUizmW0bT0WICyccllVJWkiV/m7Wl0tBw1mzC+/GMSqRtrHviJbaKph36jl9ymV4ptaCZlv9L4JnQaTBtbMCgIByQw2VtiuSLK1CxWxzPSGFt2YDpckSvX+tmgsRkzRQqqyhifzpBg5fyvc11knpun3AXlDtiMXLBxZWsIHzxTi9oof/pIC0+xy9uy7YTIoZs2gYlBDsjbXYI5X6wywwvNhJ+UIifKndjcy0AMnDUp545k/vRMdV5nne9udW4LdUcYwdHtn2yebfsuwnzkUWSHnrEqYIGeKoqJDsOfe2//UD0DxDLni6z34uQXngck3aqHZm4bxpEjWz3O7FV7ErOHJaBsp5nvvZty9bXgMQE/ZYlAI4s4ubN5tqdrr8Jcxyhk/xhKWUskrGR9PO2detj26AG3MVBBpYtSJzINRmxcUlh+s2zI2+9n4t2D0u0pzzCNy6X0rIKOaoGcpHLyZWBP6BrUztnyOdRf8iUKylsUmbPtJceBtvMgXkHQWsh1v8YEo/xdpzSzQUDgiewrg666MnNvbCx3GLirxC4i/Lt5J9gTlqXQGD+FChs+wW4WeLIP+ocesmS/UokvS6920sKE5RRxW0cX/yXeQDaNjKfzniTdPNO0b8RQFX1s5Ny8vRq49YJB4K/qi51VH8c04hz3NjH4uGo4F8vuPvImshLo/pJhLWmZrzr4w8emoP+thPg0DYGbH7O5MLBseGp4BNy7lQT2ZqgwUGzi7ygP9ArOQS/a309ja40e+tZuW4Eed+HdvWb9wYHTHuZWBygwBusw85Ck+329U3OabJFN2kif07tBqZ/OZ+PMQOcIIZq2Isa7BLoe6kqIVT6yzUXsMYPnnD9BrANGaqB/6vyUH3ZhFBSh3L1gt9T2NGt2F41nUyCRSlwiOJL0i6auBVx7QBY9V15WzHqyAD7Jv1cpzkJYNPZhornEiu7+xmwDPeQgEf8FMXxuNKBV56D0Zzh70lHK5IsbHMAERU5D6DvUDEcVBdRF5+YCM7ap6rmhZeizQyFPObA5Np7UgI8DK0cAA3IscSTWev7/WVQLTfaxy4KDbv5TQPNK9V4dq3/7K8AM/M99KhkbXP13/VNHQOpaOrWqsruIAnHCMIA+u047+g1asNCjreV2zSouw22ujl2edOLjlxRKsYefcKCXH4IdTSRxKWVrpNCYwLVUrHSEFDP7BpIckMxvmna90+QWA2EQC1R031EFjCbhjqAqvJHs0EgRs9WH9Cql+jjIkZ/oSZsA6gcxPo1dtJ7xaI/0SmGZHABPopPrg7NRamyhKH1B3XozzSzDm/6w4BjIBQVxeSt/0LPEI0z2Bh2j4ioStXIQ+a/nnUxbOCuHlKvZKyk7Vo2C4Xqz7VKHsTIINIHtT+AjFT+Byrqpb6EAFqtPJSZAvX8bQM/QOVNhPs8Ue0VIODsfbofq+FFo+aw1KxzFvavsGrtymi9JaREc6rqzhTSO/BmSYmo9IMb0ntLGW9xnEhJVUjOiD4h/95h4p7vVjEGwCnlxDWFiKXV7TgmVmY+PiNyJs/HtBIGP+apo9CA+IK8yzFrhZc7MIPXKOCdb0tuvIOYEKLwkfdy68hG07nHgmthYs949fQWLeM9Qb93i1cULhzwE00TxOSjriuKV+/eRZTsBz7TlcI8Vw7aPoRi7eYClk6+VB/TDMFHdr/OUlJCkX1eWiR3XAuxeFA385qcBKJU0qf1F2/43XlT29AHev8VD/jo82+nSEzcbEQXO4f9JB/qZcpgdX89+5I1ZzvQa0PVVtQUnQECxqWANfwGCvbPCri9sqbOLHtyj5uM4LL00RCHuTfgjryhxidApIdZFE7WGeRDaWK8DDgbjEGW+1+S97aWj0nk8jqkT9/MOQ9WBcDmOJym6jjH50TWOqAfYs7pn9V/QE7xn5bKh7EiKVX7cPBHObxvABwlBIiOqMPBoo7GrZI31jdTZQRoyUte4yDg2Gm2Ji718Y/uXopxIkDAzmv2oOl921Xnt1nDZPtLGX6wp1sUrtoZ2h43FJmhG3z4xTs3sEY+BZlGx7saEOBMYWHzsR2TLueFKMMbOaM9rfFYhdGrB5DoPWZ87Yd6/iikPkwoj/YwhCHzd3mmgYVSQcRrQnlxALFKTR3Ub0X3j+NgKOK7K36gyQr1p7pUk0MVNfPvNyzKVSknuH4J8f23OMvRwmpmKFpIf0br5iiGo8P9VKvmhthdvZw/hwahwkvka9FEj25+f43+6o+QHtD90BhZP7jU+vYaxBLkvQJVct46/Y4PVOa6aouA1mZOR90O0igtTxY3oOv+Pngkdp37rI8wk/3zJ0u8tA8W+FDvRo1yGMfyarrVUXvogQp05Pt/Lu1DQFTzgj04KLIARpgvceDtNk1IT+J0GcD5Y+54pFHOc3PLKjnJ0ZpOCGM0vbihHVTh81xEbU1C+/KWTQWWhWVfC/8gEGvO3tEtaYPUNHRvHP9Folni6dqs8m/V5f99hS8RyBWAMYFk6eBiRztCy7Tlpx34erthYUmfzzJc3BlCB1YlUu8To/krHf9I0XAWTmBSITrDxdhSNWviBZOFP9HKMhyFuOML5/MqsgsiWlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 200704, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651799002.824262, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEIbFT+uBgU/LfXWvLBI9r3gqxo87xwLPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILcxCO6fjQMCUhpRSlIwBbJRN6AOMAXSUR0B8R3Q8fV7QdX2UKGgGaAloD0MINzY7Un15QcCUhpRSlGgVTegDaBZHQHx4fi97F851fZQoaAZoCWgPQwgRje4gdsxKwJSGlFKUaBVN6ANoFkdAfOKtpmEoOXV9lChoBmgJaA9DCMqNImsNOF5AlIaUUpRoFU1mAmgWR0B8/djYqXnhdX2UKGgGaAloD0MIlWQdjq5QRECUhpRSlGgVTegDaBZHQH1aU1IiC8R1fZQoaAZoCWgPQwiKj0/IzipRwJSGlFKUaBVN6ANoFkdAfY2NPP9k0HV9lChoBmgJaA9DCHY0DvW7ADPAlIaUUpRoFU3oA2gWR0B95ykRBeHBdX2UKGgGaAloD0MI/zwNGCQ9D8CUhpRSlGgVTegDaBZHQH4b6yOaOPx1fZQoaAZoCWgPQwgwE0VI3eBFQJSGlFKUaBVN6ANoFkdAfnaDk2gnMXV9lChoBmgJaA9DCF+aIsDpn0zAlIaUUpRoFU3oA2gWR0B+pF3A2ycDdX2UKGgGaAloD0MI3GYqxCNdSMCUhpRSlGgVTegDaBZHQH77Wo73fyh1fZQoaAZoCWgPQwjkh0oj5u9gQJSGlFKUaBVNNgNoFkdAfyTaQFLWZ3V9lChoBmgJaA9DCAR0X85sUznAlIaUUpRoFU3oA2gWR0B/cw/IKc/ddX2UKGgGaAloD0MI5pDUQsmDZkCUhpRSlGgVTZgDaBZHQH+heaz/p+t1fZQoaAZoCWgPQwgdWI6QgWpEQJSGlFKUaBVN6ANoFkdAf+J6tT1kD3V9lChoBmgJaA9DCCDVsN8Tg2HAlIaUUpRoFU1bA2gWR0CAF+oScslLdX2UKGgGaAloD0MIISOgwhFcSsCUhpRSlGgVTegDaBZHQIAxAyM1jy51fZQoaAZoCWgPQwhLdJZZBA9jwJSGlFKUaBVNMQNoFkdAgFTw7cO9WnV9lChoBmgJaA9DCMTuO4bHNVzAlIaUUpRoFU2mAmgWR0CAYxgydnTRdX2UKGgGaAloD0MIelbSim++QECUhpRSlGgVTegDaBZHQICL01/DtPZ1fZQoaAZoCWgPQwh4liAjoKJDQJSGlFKUaBVN6ANoFkdAgKUeoLofS3V9lChoBmgJaA9DCGLboswGg0RAlIaUUpRoFU3oA2gWR0CAy6aQ3gk1dX2UKGgGaAloD0MIG7yvyoW6MUCUhpRSlGgVTegDaBZHQIDj1d/rjYJ1fZQoaAZoCWgPQwht5Lop5SdkQJSGlFKUaBVNDQJoFkdAgO61TrE9+3V9lChoBmgJaA9DCKIpO/2gfVjAlIaUUpRoFU3uAWgWR0CBCX6GgzxgdX2UKGgGaAloD0MIxAq3fCT9NkCUhpRSlGgVTegDaBZHQIEh2I68xsV1fZQoaAZoCWgPQwgfLjnulHYkQJSGlFKUaBVN6ANoFkdAgUnGxMWXTnV9lChoBmgJaA9DCNttF5rrHk3AlIaUUpRoFU06AWgWR0CBTwKP4mCzdX2UKGgGaAloD0MIfnIUIIogYMCUhpRSlGgVTYoCaBZHQIFcX0Gu9vl1fZQoaAZoCWgPQwhQ/1nz41hWwJSGlFKUaBVNAQJoFkdAgWZgeRxLkHV9lChoBmgJaA9DCNY4m44AuEVAlIaUUpRoFU3oA2gWR0CBlo54nndPdX2UKGgGaAloD0MI8PrMWZ9iScCUhpRSlGgVTegDaBZHQIGss0cfeUJ1fZQoaAZoCWgPQwgQIhlybJJZQJSGlFKUaBVN6QJoFkdAgc/LxAjY7XV9lChoBmgJaA9DCNpzmZoE8WTAlIaUUpRoFU0WA2gWR0CB4YztTkyUdX2UKGgGaAloD0MIF7t9Vpk5MECUhpRSlGgVTegDaBZHQIH8ZZKWcBl1fZQoaAZoCWgPQwjUSba6nA5NwJSGlFKUaBVL4WgWR0CCEcRU3n6mdX2UKGgGaAloD0MIFw6EZAEiVMCUhpRSlGgVTc4BaBZHQIIajv1DjR51fZQoaAZoCWgPQwjTaHIxBlJVQJSGlFKUaBVN4QJoFkdAginEX+ERJ3V9lChoBmgJaA9DCGtkV1pGYi1AlIaUUpRoFU3oA2gWR0CCVgsTWXkYdX2UKGgGaAloD0MIWB6kp8jBJ0CUhpRSlGgVTegDaBZHQIJ157mdRSB1fZQoaAZoCWgPQwg4ukp31xZcwJSGlFKUaBVNpAJoFkdAgoXZdfLLZHV9lChoBmgJaA9DCPUUOUTcskZAlIaUUpRoFU3oA2gWR0CCrBXyRSxadX2UKGgGaAloD0MIz6RN1T0eV8CUhpRSlGgVTWoCaBZHQIK43sTnJT51fZQoaAZoCWgPQwhlxttKr80ZwJSGlFKUaBVN6ANoFkdAgue9yLhrFnV9lChoBmgJaA9DCCbICKhwVl3AlIaUUpRoFU3oA2gWR0CC/lugpSaWdX2UKGgGaAloD0MIgUBn0iYwYECUhpRSlGgVTR4DaBZHQIMhrzd1uBN1fZQoaAZoCWgPQwhN9zqpL4VgwJSGlFKUaBVNaQJoFkdAgy6bbtZ3cHV9lChoBmgJaA9DCHH/kenQaTtAlIaUUpRoFU3oA2gWR0CDSQlj3EhrdX2UKGgGaAloD0MIKowtBDmIUcCUhpRSlGgVTXMCaBZHQINpK1Z1V5t1fZQoaAZoCWgPQwgabVUSWdhnQJSGlFKUaBVNvAJoFkdAg3pwzch1T3V9lChoBmgJaA9DCNxJRPgXKmJAlIaUUpRoFU1VA2gWR0CDoXVvMr3CdX2UKGgGaAloD0MI86ykFV9RaECUhpRSlGgVTfECaBZHQIO0qVObiId1fZQoaAZoCWgPQwgYCAJk6JlWwJSGlFKUaBVNGwJoFkdAg775jH4oJHV9lChoBmgJaA9DCGIvFLAdsE5AlIaUUpRoFU1UA2gWR0CD4w/s3Q2NdX2UKGgGaAloD0MIAd2XM9v5N8CUhpRSlGgVTegDaBZHQIP+o5cTrVx1fZQoaAZoCWgPQwiLwcO0bzFRwJSGlFKUaBVNXwFoFkdAhASM4tHx0HV9lChoBmgJaA9DCMOayqKwl1VAlIaUUpRoFU0mA2gWR0CEJqfHPu5SdX2UKGgGaAloD0MI0V0SZ0WlWcCUhpRSlGgVTRkCaBZHQIQx2ejEehh1fZQoaAZoCWgPQwifOetTjgtnQJSGlFKUaBVNSQNoFkdAhEgqnWJ79nV9lChoBmgJaA9DCGqjOh3IH2RAlIaUUpRoFU1LAmgWR0CEZeiY9gWrdX2UKGgGaAloD0MIOnr83qafTMCUhpRSlGgVTcYBaBZHQIRu8yeqaPV1fZQoaAZoCWgPQwjyXUpdMmlgwJSGlFKUaBVNhgJoFkdAhHvR6fJ3gXV9lChoBmgJaA9DCBH+RdAYK2RAlIaUUpRoFU0CA2gWR0CEjJLV4HHFdX2UKGgGaAloD0MIYXDNHf07RkCUhpRSlGgVTegDaBZHQIS2tLnLaEl1fZQoaAZoCWgPQwj7IwwDlvhLwJSGlFKUaBVNDAJoFkdAhMCmeUY8+3V9lChoBmgJaA9DCBKkUuxom1VAlIaUUpRoFU3oA2gWR0CE5pP69CeFdX2UKGgGaAloD0MI1EhL5e1DWkCUhpRSlGgVTegDaBZHQIT+8ibDuSh1fZQoaAZoCWgPQwjluFM62LRnQJSGlFKUaBVNmQJoFkdAhR2MGHHmzXV9lChoBmgJaA9DCLTmx19aLltAlIaUUpRoFU3VAmgWR0CFMWWAwwj/dX2UKGgGaAloD0MI4iAhyhd8R0CUhpRSlGgVTegDaBZHQIVQ86xPfsN1fZQoaAZoCWgPQwhFoWXdP7FZwJSGlFKUaBVN5QFoFkdAhWzGPgeijHV9lChoBmgJaA9DCE3Z6Qd1wFXAlIaUUpRoFU2JAmgWR0CFfLRE4NqhdX2UKGgGaAloD0MIADj27LkvZECUhpRSlGgVTcQCaBZHQIWM61kUbkx1fZQoaAZoCWgPQwhnQ/6ZQXldwJSGlFKUaBVNrQJoFkdAhbAJ1q33H3V9lChoBmgJaA9DCLLzNja7V2pAlIaUUpRoFU2qA2gWR0CFyAtwrDqGdX2UKGgGaAloD0MI121Q+60kWMCUhpRSlGgVTUQCaBZHQIXTgkzGgjB1fZQoaAZoCWgPQwiGdePdkQ5YQJSGlFKUaBVN6ANoFkdAhfi8580DU3V9lChoBmgJaA9DCGJnCp1X02lAlIaUUpRoFU2AAmgWR0CGBeMxXXAedX2UKGgGaAloD0MI2qz6XO1zY8CUhpRSlGgVTa4CaBZHQIYT6Rhc7hh1fZQoaAZoCWgPQwgf9GxWfWFnQJSGlFKUaBVNlwJoFkdAhjKBbfP5YnV9lChoBmgJaA9DCBhftMcL3FFAlIaUUpRoFU3oA2gWR0CGTBfsu3+ddX2UKGgGaAloD0MI4uXpXFGvU0CUhpRSlGgVTegDaBZHQIZ06gM+eOJ1fZQoaAZoCWgPQwjqeMxAZZhdwJSGlFKUaBVNLAJoFkdAhn+qIi1RcnV9lChoBmgJaA9DCJM2VffIskVAlIaUUpRoFU3oA2gWR0CGpj38n/kvdX2UKGgGaAloD0MIy74rgv8UZUCUhpRSlGgVTbwCaBZHQIa0xEDyOJd1fZQoaAZoCWgPQwgZxXJLq3NkQJSGlFKUaBVNyAJoFkdAhsYUGmk30nV9lChoBmgJaA9DCMozL4fdUGNAlIaUUpRoFU2fAmgWR0CG6OJTER8MdX2UKGgGaAloD0MI9u6P96p1OUCUhpRSlGgVTegDaBZHQIcAnqPfbbl1fZQoaAZoCWgPQwgOhGQBEwJYwJSGlFKUaBVN1wJoFkdAhw8HRkVer3V9lChoBmgJaA9DCKlr7X2qqidAlIaUUpRoFU3oA2gWR0CHP6MFUyYYdX2UKGgGaAloD0MI7PoFu+FUZECUhpRSlGgVTUICaBZHQIdK4SnLq2V1fZQoaAZoCWgPQwiUUPpCSMliQJSGlFKUaBVNkQJoFkdAh1m8PnSv1XV9lChoBmgJaA9DCKvoD808YVfAlIaUUpRoFU3yAWgWR0CHdG0P6KtQdX2UKGgGaAloD0MIPIidKXQXXMCUhpRSlGgVTYoCaBZHQIeBtFKCg9N1fZQoaAZoCWgPQwjJ42n5AaJmQJSGlFKUaBVNxwNoFkdAh6dLLhaTwHV9lChoBmgJaA9DCAMJih9ju2BAlIaUUpRoFU3MAmgWR0CHtrustCiRdX2UKGgGaAloD0MIrTWU2ovRX0CUhpRSlGgVTdECaBZHQIfK/CfpUxV1fZQoaAZoCWgPQwiGjh1U4hthQJSGlFKUaBVNNANoFkdAh+2TuOS4fHV9lChoBmgJaA9DCLSSVnxDMVbAlIaUUpRoFU3UAmgWR0CH/FMi8nNQdX2UKGgGaAloD0MIih9j7lr/YECUhpRSlGgVTTwDaBZHQIgN0bcXWOJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7b403c109ea882a6545b50eb26cc66195c3d609a660b207dd4f79def62b6074
|
3 |
+
size 150662
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc4fb58b90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc4fb58c20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc4fb58cb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc4fb58d40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcc4fb58dd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcc4fb58e60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc4fb58ef0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcc4fb58f80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc4fb60050>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc4fb600e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc4fb60170>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fcc4fba3a50>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAF/PmMaZZG04jqhnuxZiBDj8ACrcdrCvvT5JxYpe64Ky5bOUQruTHaNiIRfNHbni1+4ZH0uXgun/cIoOPxwmdcBH9gFd79r5P0YI1UeH0RGI50FL/hISxm+81U7B7qkeIfrizqntFRp66ZLQSE7aN/REiUWN+a0tfORsth0K0A6goPu36S/dVu3pKbFz56yiu8Es67Tf4SOunKdHqsIhxob5aJrmqrD4A6fdWDhJgs+A9rkyAiyQDfJytreDHX9krw2z2IUFBGA9nEsksHErm+HDOhHOB/wPdYDJdz2UG5WmCcZ4JZQAhi3cWVlH6jbdzMUfVOI5RQDBvGe/tfowyDUPK9kDztOU9Pml9qDbJzPM5VXtADUVdxnde1Ow51TzNR43nPtOWSG3MqqqaCQ1JmrFblCYHFZjAU3ak9aEih8bG5LyyMtU0czk68f17Eo9mopn0TZG/Y69G/jjnuWqYrtXpMQ2zuoG6F6d8lBHjyWmkpspYlqwJ8Y20n7UO5LPx6DRFTC5ZJxyK/C0qPmrqz13WYVLfCJneqHPweurBDmzs3hCV6I7N2TpY+ibayIP16K4ujZtiYdBK1IwkInO0uf16hfbQMc+zD/9aLM7lhiX+dLylBi0rW+662WF7zGIAdYPiO8QMKox6QGqUKUcq5hzRlAD1LpkXGovEQj6HlhT8AdM7fORZTOw+wJ0jO0b1zmmSE/YXWMh7+lTA/Vl9FLKY3CBr+eY0VuXLTH1W2lFkk+USC1gcPkGc33xmOHJl0KpKdKauAXyholMILPbmT9zb3JlGJ7f3YlI7xfdOCnPqyyJXXkN5LIupfNzeL3Y0OihMmyiTJfaPLH69Dl7ob74l2DTf0JWpeXC3/3xLxzzoQ2Undt2KDNXRI7Go3V8eTdON7puK04tMpEDM28QQe2qzOrUdtR9yRVn0zGE7WOlwI0FwsM6/EGd8Gvr16CXPNVDaCx0T7b2YwV3soJI9ZI8f53D+oP0CP6JULOzHdxVKWmZ8gKHYu8jWVqDnzAxuQ89KFW3eCUnleXNxcxjTz6YZXSUMTQdkIcCFsxHaoU+1/kRlgMlKV5HFvGg8KG27oaIx7gZmudewbc7f+idvMJNHg4SijNkMgChSvoVhy2Z17HLoRpKvyaigaSw653lxQHZO7I+Np7/yTi2cXSTSOBzEMww0pZ5P2vpkPd/GJqbzEpXVwN/41HkaDYXxvlEJ+/cAnkCmmt9jKmrS9OZfPWcbvNEpXn6cjz23RZ76C1yQbg2SvE3s550vKX6aT6syp+ENlvg8C2Tntcw25hbtEdbjlvbDdH4yhROHiw8OlgECSPTnVwHjuqk3fQ5kdCKLvpuLfeKfnqKIGuhu/1ShNHmcv/NrQIlXQdmciHv6sPWZhs3Wppna1l2G2KFdFXH2haeTgFuLYaR6FDP4nYthhQS4q29AR3rGap5WSrjhDkwWPdfbkZUI6z8QqNIqppgUrrlkeS+9gubTVV5AnfVGtQSseRIsS4/jO7ntFJBrqOlOJjAepIT+JtVaIHFwivMPEneQN/8tpPoaY5T/qJY5c4jYjIJvrvBGu38f34DHVXMS5BUq7urwIA2XDPPUc6sAuy9bajPzXffca1hWBYjXpCSCdDb+wnx79xbyHFQfTA7L8Br9q1uF3DDJfYPmtZPUKbAhwXzI9AcOFxZ8BeJ3P0PblZiWdKiib7e8m2KTEe1rPF05iHOvIG463VEpBXkad7b6ieHoDBWT6ywLik4mERG9tGa/FK9KYoqeT9fYk+aY205s6sqriQq0y1xa8RpZZV0hhuVkTgJW17mWkMYUkc6P8oUh2ZU9HqLao94LuOZf69dPZW4Y4DhUik59fp91tGhgN6h9R7t5XabX3gsmOdKRRjbVUKXkuBb03w8djinuhAcRQal3TXnTTxmcybI+7cHfh1fnlYqIe/fnZL/D6BIHGvpEDzcSZPiP/JJPncXwcOOO3BXkOz/4baYIiTzdOAMW70zIUYLLF5joShCWseR28nJkfrT9dNydsexdMuedKaU3YlwCnhUbF8mOtAP7gqbHFcszcjJQ9Pc7y2G4Opf5wFOBRlPRmxju/2ESTp9b1duR4cNuaZCvzYquSB+qpNZoOqWDLzDNR7XxcQLMmGf2LDrZ4yvj3a26oRNcoHUajruvJ9nk/xBfMdXELwgSTRK89miUFCfV+oy2uBCw4XHEyaBteD9Z71gOjbgtygfIOsV+g0joXw4o1P1W2gUp7ajbw0CydmJD8s6oxkEyyKy4XR9ei7/ye+J5Ihm1EhEmUHF3iryX0j33cKVBwiwwzmHRApQBp46kouM4PqAWJygRXkzDxwsswP7FpgCljMNphlM3BBz9MgGqtNlV3xGV67BcNPhqoIXqUuRI3GmzE8EaSd9Jb8em/N3EXXNUkt8pYuG87fCGuyvqGTEwvzja31BSmkC037D9uagDTfmRV/mtFCvKc0ztuDPkmOaugu6S3sAP7Qh9gXnJcJuPh65ViMu7hbH/jTcP65x1EBYmj4ftB9XEtVrQm3nohxfGgHLjzU6/KO0iOKcbBKvltrKvQQm6A9ABFM8reKUmmcsDAw5gtdKuHqsQLqo/A4T2lAkaQxNPW0XSEgMrRaxo3Egih3pZIvHkfAFBYYPWRjWeaLLn1Ttb3JSFFxEqA25AUfZ/nWj6oUQlwtKcINrUQrrhyOr/mI/fkZPD/Keiqf0oJ4NpNMdMrkjAQywW69Itcx1u2ZbfdbD8lzhbAixTRcuQ+EaS14tEBRTvSZDSLdJALQQ3E7rOttcLRUTojdjOKZ2IxcJO0gmkrIK0AN5c2zoN77Gi0qG2tWHSU+6MCf9qKmL7QaF+Xnrbw1UhZZxh4Pser4yFOncrmaaVmUg5UHg8TVD8c2urCBI8MLmOpBZVNcrqXwu8FKm0ozs3+/aWAslcPueIQJ4tV+y5xWvPswZ65UcXuq6Kk0r6bBGckF40EqfwClFce/x6uk43g7/YFaEt0vNjzjKASdw26wmNIa0CxfhDGZXB5TdN6lljoK3WRjUpE8Z6kQ4MB8g0Nac7VqsRe0mkOZkLfGmzFyx4gmXodeI+trfXLbBgg72H2MCbbb583LfY4savD8hQGq14hDpgTA59FOWWhzSwRCR6M+IEs2A8C8EsCEpYvFCWFPlgl0Dvy0+l7E8Gc9OuHAhn+5v4HOvn1cypRcdTJxlsbjss52IzyyerBoUOwIAQyOtHgCr3BIF1GThQNZ3TyDwvuozd2bTrn/qREnmBG/HZxtIgJvJ7R9y4JlMoUxqORlNyP5ZpPw3VhQ0eKKaiCsEGHk4AOvrfCB7gwxtDv4W447kUJRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsYdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": "RandomState(MT19937)"
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAmvD3dgW+85K0IX0bauzFKszgTeUedJr0DeORpgUr0RjoVoiArnI+Bo/85V8Z6G80VbVeC2ysWCSgfkGYhkKn7Ksb2Hv/xdxf3WDg93Y4SUJCcYsjmQkg0NhYbohTUxmPQhgW2MTaOXUPlCXXdJVu8SsFKoNkGghloKXaV5hyZjv5R9zDyBYKst1P5jbOtl+6QeOlGS+bo4xp66DjoyJgl/SWA3sw9RJyN1hONBXJ9QEaVuxN7xZhOJ3XaMtIpgl17Idh/zUBX9Eengrluxa39rTdVtWKp93i4r5jGNCUuZY0VzhbJPK9CcG/Zykh6jv+DEHuRVh5HFUQPOkKzpb3+C4YemKcPPAo5u6yDKjBnVQY7dfhkJzM5t+JGtx7f2L4fGDtKnXxxjMjNkFQLcpbPUIpAbI8IaDrGu8Bx5OFkhSL31zKB4OcGUnvaJJm+zihuJekZsluokPhGqxmhnfQDQcIoXFtlO7JeIeziIMfuqlbKhUA0Yc5yNfWeOai5cZCPuNhJLeLOuRFT5FOSXfe5UNhkUX2rIjQ/tf8raZ61SnwBLFE/dCnko4TORPh80gHtBZT8c8XtyKFb5DwOtVbERCYkR+jti6qY4rnYSyNnlCEWNqUBvYVjTWrtM4s4xxZ0RNsJE8rikI+5q8+yhEaypDQyrX9PSvILabFUsjhR3pDCn2iIVZGei0phP3Oeiqh4HO8A1xZt3NjDv776VribIMqncU0BbRV+W6FP8Nge1LUizmW0bT0WICyccllVJWkiV/m7Wl0tBw1mzC+/GMSqRtrHviJbaKph36jl9ymV4ptaCZlv9L4JnQaTBtbMCgIByQw2VtiuSLK1CxWxzPSGFt2YDpckSvX+tmgsRkzRQqqyhifzpBg5fyvc11knpun3AXlDtiMXLBxZWsIHzxTi9oof/pIC0+xy9uy7YTIoZs2gYlBDsjbXYI5X6wywwvNhJ+UIifKndjcy0AMnDUp545k/vRMdV5nne9udW4LdUcYwdHtn2yebfsuwnzkUWSHnrEqYIGeKoqJDsOfe2//UD0DxDLni6z34uQXngck3aqHZm4bxpEjWz3O7FV7ErOHJaBsp5nvvZty9bXgMQE/ZYlAI4s4ubN5tqdrr8Jcxyhk/xhKWUskrGR9PO2detj26AG3MVBBpYtSJzINRmxcUlh+s2zI2+9n4t2D0u0pzzCNy6X0rIKOaoGcpHLyZWBP6BrUztnyOdRf8iUKylsUmbPtJceBtvMgXkHQWsh1v8YEo/xdpzSzQUDgiewrg666MnNvbCx3GLirxC4i/Lt5J9gTlqXQGD+FChs+wW4WeLIP+ocesmS/UokvS6920sKE5RRxW0cX/yXeQDaNjKfzniTdPNO0b8RQFX1s5Ny8vRq49YJB4K/qi51VH8c04hz3NjH4uGo4F8vuPvImshLo/pJhLWmZrzr4w8emoP+thPg0DYGbH7O5MLBseGp4BNy7lQT2ZqgwUGzi7ygP9ArOQS/a309ja40e+tZuW4Eed+HdvWb9wYHTHuZWBygwBusw85Ck+329U3OabJFN2kif07tBqZ/OZ+PMQOcIIZq2Isa7BLoe6kqIVT6yzUXsMYPnnD9BrANGaqB/6vyUH3ZhFBSh3L1gt9T2NGt2F41nUyCRSlwiOJL0i6auBVx7QBY9V15WzHqyAD7Jv1cpzkJYNPZhornEiu7+xmwDPeQgEf8FMXxuNKBV56D0Zzh70lHK5IsbHMAERU5D6DvUDEcVBdRF5+YCM7ap6rmhZeizQyFPObA5Np7UgI8DK0cAA3IscSTWev7/WVQLTfaxy4KDbv5TQPNK9V4dq3/7K8AM/M99KhkbXP13/VNHQOpaOrWqsruIAnHCMIA+u047+g1asNCjreV2zSouw22ujl2edOLjlxRKsYefcKCXH4IdTSRxKWVrpNCYwLVUrHSEFDP7BpIckMxvmna90+QWA2EQC1R031EFjCbhjqAqvJHs0EgRs9WH9Cql+jjIkZ/oSZsA6gcxPo1dtJ7xaI/0SmGZHABPopPrg7NRamyhKH1B3XozzSzDm/6w4BjIBQVxeSt/0LPEI0z2Bh2j4ioStXIQ+a/nnUxbOCuHlKvZKyk7Vo2C4Xqz7VKHsTIINIHtT+AjFT+Byrqpb6EAFqtPJSZAvX8bQM/QOVNhPs8Ue0VIODsfbofq+FFo+aw1KxzFvavsGrtymi9JaREc6rqzhTSO/BmSYmo9IMb0ntLGW9xnEhJVUjOiD4h/95h4p7vVjEGwCnlxDWFiKXV7TgmVmY+PiNyJs/HtBIGP+apo9CA+IK8yzFrhZc7MIPXKOCdb0tuvIOYEKLwkfdy68hG07nHgmthYs949fQWLeM9Qb93i1cULhzwE00TxOSjriuKV+/eRZTsBz7TlcI8Vw7aPoRi7eYClk6+VB/TDMFHdr/OUlJCkX1eWiR3XAuxeFA385qcBKJU0qf1F2/43XlT29AHev8VD/jo82+nSEzcbEQXO4f9JB/qZcpgdX89+5I1ZzvQa0PVVtQUnQECxqWANfwGCvbPCri9sqbOLHtyj5uM4LL00RCHuTfgjryhxidApIdZFE7WGeRDaWK8DDgbjEGW+1+S97aWj0nk8jqkT9/MOQ9WBcDmOJym6jjH50TWOqAfYs7pn9V/QE7xn5bKh7EiKVX7cPBHObxvABwlBIiOqMPBoo7GrZI31jdTZQRoyUte4yDg2Gm2Ji718Y/uXopxIkDAzmv2oOl921Xnt1nDZPtLGX6wp1sUrtoZ2h43FJmhG3z4xTs3sEY+BZlGx7saEOBMYWHzsR2TLueFKMMbOaM9rfFYhdGrB5DoPWZ87Yd6/iikPkwoj/YwhCHzd3mmgYVSQcRrQnlxALFKTR3Ub0X3j+NgKOK7K36gyQr1p7pUk0MVNfPvNyzKVSknuH4J8f23OMvRwmpmKFpIf0br5iiGo8P9VKvmhthdvZw/hwahwkvka9FEj25+f43+6o+QHtD90BhZP7jU+vYaxBLkvQJVct46/Y4PVOa6aouA1mZOR90O0igtTxY3oOv+Pngkdp37rI8wk/3zJ0u8tA8W+FDvRo1yGMfyarrVUXvogQp05Pt/Lu1DQFTzgj04KLIARpgvceDtNk1IT+J0GcD5Y+54pFHOc3PLKjnJ0ZpOCGM0vbihHVTh81xEbU1C+/KWTQWWhWVfC/8gEGvO3tEtaYPUNHRvHP9Folni6dqs8m/V5f99hS8RyBWAMYFk6eBiRztCy7Tlpx34erthYUmfzzJc3BlCB1YlUu8To/krHf9I0XAWTmBSITrDxdhSNWviBZOFP9HKMhyFuOML5/MqsgsiWlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": "RandomState(MT19937)"
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 200704,
|
46 |
+
"_total_timesteps": 200000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651799002.824262,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEIbFT+uBgU/LfXWvLBI9r3gqxo87xwLPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILcxCO6fjQMCUhpRSlIwBbJRN6AOMAXSUR0B8R3Q8fV7QdX2UKGgGaAloD0MINzY7Un15QcCUhpRSlGgVTegDaBZHQHx4fi97F851fZQoaAZoCWgPQwgRje4gdsxKwJSGlFKUaBVN6ANoFkdAfOKtpmEoOXV9lChoBmgJaA9DCMqNImsNOF5AlIaUUpRoFU1mAmgWR0B8/djYqXnhdX2UKGgGaAloD0MIlWQdjq5QRECUhpRSlGgVTegDaBZHQH1aU1IiC8R1fZQoaAZoCWgPQwiKj0/IzipRwJSGlFKUaBVN6ANoFkdAfY2NPP9k0HV9lChoBmgJaA9DCHY0DvW7ADPAlIaUUpRoFU3oA2gWR0B95ykRBeHBdX2UKGgGaAloD0MI/zwNGCQ9D8CUhpRSlGgVTegDaBZHQH4b6yOaOPx1fZQoaAZoCWgPQwgwE0VI3eBFQJSGlFKUaBVN6ANoFkdAfnaDk2gnMXV9lChoBmgJaA9DCF+aIsDpn0zAlIaUUpRoFU3oA2gWR0B+pF3A2ycDdX2UKGgGaAloD0MI3GYqxCNdSMCUhpRSlGgVTegDaBZHQH77Wo73fyh1fZQoaAZoCWgPQwjkh0oj5u9gQJSGlFKUaBVNNgNoFkdAfyTaQFLWZ3V9lChoBmgJaA9DCAR0X85sUznAlIaUUpRoFU3oA2gWR0B/cw/IKc/ddX2UKGgGaAloD0MI5pDUQsmDZkCUhpRSlGgVTZgDaBZHQH+heaz/p+t1fZQoaAZoCWgPQwgdWI6QgWpEQJSGlFKUaBVN6ANoFkdAf+J6tT1kD3V9lChoBmgJaA9DCCDVsN8Tg2HAlIaUUpRoFU1bA2gWR0CAF+oScslLdX2UKGgGaAloD0MIISOgwhFcSsCUhpRSlGgVTegDaBZHQIAxAyM1jy51fZQoaAZoCWgPQwhLdJZZBA9jwJSGlFKUaBVNMQNoFkdAgFTw7cO9WnV9lChoBmgJaA9DCMTuO4bHNVzAlIaUUpRoFU2mAmgWR0CAYxgydnTRdX2UKGgGaAloD0MIelbSim++QECUhpRSlGgVTegDaBZHQICL01/DtPZ1fZQoaAZoCWgPQwh4liAjoKJDQJSGlFKUaBVN6ANoFkdAgKUeoLofS3V9lChoBmgJaA9DCGLboswGg0RAlIaUUpRoFU3oA2gWR0CAy6aQ3gk1dX2UKGgGaAloD0MIG7yvyoW6MUCUhpRSlGgVTegDaBZHQIDj1d/rjYJ1fZQoaAZoCWgPQwht5Lop5SdkQJSGlFKUaBVNDQJoFkdAgO61TrE9+3V9lChoBmgJaA9DCKIpO/2gfVjAlIaUUpRoFU3uAWgWR0CBCX6GgzxgdX2UKGgGaAloD0MIxAq3fCT9NkCUhpRSlGgVTegDaBZHQIEh2I68xsV1fZQoaAZoCWgPQwgfLjnulHYkQJSGlFKUaBVN6ANoFkdAgUnGxMWXTnV9lChoBmgJaA9DCNttF5rrHk3AlIaUUpRoFU06AWgWR0CBTwKP4mCzdX2UKGgGaAloD0MIfnIUIIogYMCUhpRSlGgVTYoCaBZHQIFcX0Gu9vl1fZQoaAZoCWgPQwhQ/1nz41hWwJSGlFKUaBVNAQJoFkdAgWZgeRxLkHV9lChoBmgJaA9DCNY4m44AuEVAlIaUUpRoFU3oA2gWR0CBlo54nndPdX2UKGgGaAloD0MI8PrMWZ9iScCUhpRSlGgVTegDaBZHQIGss0cfeUJ1fZQoaAZoCWgPQwgQIhlybJJZQJSGlFKUaBVN6QJoFkdAgc/LxAjY7XV9lChoBmgJaA9DCNpzmZoE8WTAlIaUUpRoFU0WA2gWR0CB4YztTkyUdX2UKGgGaAloD0MIF7t9Vpk5MECUhpRSlGgVTegDaBZHQIH8ZZKWcBl1fZQoaAZoCWgPQwjUSba6nA5NwJSGlFKUaBVL4WgWR0CCEcRU3n6mdX2UKGgGaAloD0MIFw6EZAEiVMCUhpRSlGgVTc4BaBZHQIIajv1DjR51fZQoaAZoCWgPQwjTaHIxBlJVQJSGlFKUaBVN4QJoFkdAginEX+ERJ3V9lChoBmgJaA9DCGtkV1pGYi1AlIaUUpRoFU3oA2gWR0CCVgsTWXkYdX2UKGgGaAloD0MIWB6kp8jBJ0CUhpRSlGgVTegDaBZHQIJ157mdRSB1fZQoaAZoCWgPQwg4ukp31xZcwJSGlFKUaBVNpAJoFkdAgoXZdfLLZHV9lChoBmgJaA9DCPUUOUTcskZAlIaUUpRoFU3oA2gWR0CCrBXyRSxadX2UKGgGaAloD0MIz6RN1T0eV8CUhpRSlGgVTWoCaBZHQIK43sTnJT51fZQoaAZoCWgPQwhlxttKr80ZwJSGlFKUaBVN6ANoFkdAgue9yLhrFnV9lChoBmgJaA9DCCbICKhwVl3AlIaUUpRoFU3oA2gWR0CC/lugpSaWdX2UKGgGaAloD0MIgUBn0iYwYECUhpRSlGgVTR4DaBZHQIMhrzd1uBN1fZQoaAZoCWgPQwhN9zqpL4VgwJSGlFKUaBVNaQJoFkdAgy6bbtZ3cHV9lChoBmgJaA9DCHH/kenQaTtAlIaUUpRoFU3oA2gWR0CDSQlj3EhrdX2UKGgGaAloD0MIKowtBDmIUcCUhpRSlGgVTXMCaBZHQINpK1Z1V5t1fZQoaAZoCWgPQwgabVUSWdhnQJSGlFKUaBVNvAJoFkdAg3pwzch1T3V9lChoBmgJaA9DCNxJRPgXKmJAlIaUUpRoFU1VA2gWR0CDoXVvMr3CdX2UKGgGaAloD0MI86ykFV9RaECUhpRSlGgVTfECaBZHQIO0qVObiId1fZQoaAZoCWgPQwgYCAJk6JlWwJSGlFKUaBVNGwJoFkdAg775jH4oJHV9lChoBmgJaA9DCGIvFLAdsE5AlIaUUpRoFU1UA2gWR0CD4w/s3Q2NdX2UKGgGaAloD0MIAd2XM9v5N8CUhpRSlGgVTegDaBZHQIP+o5cTrVx1fZQoaAZoCWgPQwiLwcO0bzFRwJSGlFKUaBVNXwFoFkdAhASM4tHx0HV9lChoBmgJaA9DCMOayqKwl1VAlIaUUpRoFU0mA2gWR0CEJqfHPu5SdX2UKGgGaAloD0MI0V0SZ0WlWcCUhpRSlGgVTRkCaBZHQIQx2ejEehh1fZQoaAZoCWgPQwifOetTjgtnQJSGlFKUaBVNSQNoFkdAhEgqnWJ79nV9lChoBmgJaA9DCGqjOh3IH2RAlIaUUpRoFU1LAmgWR0CEZeiY9gWrdX2UKGgGaAloD0MIOnr83qafTMCUhpRSlGgVTcYBaBZHQIRu8yeqaPV1fZQoaAZoCWgPQwjyXUpdMmlgwJSGlFKUaBVNhgJoFkdAhHvR6fJ3gXV9lChoBmgJaA9DCBH+RdAYK2RAlIaUUpRoFU0CA2gWR0CEjJLV4HHFdX2UKGgGaAloD0MIYXDNHf07RkCUhpRSlGgVTegDaBZHQIS2tLnLaEl1fZQoaAZoCWgPQwj7IwwDlvhLwJSGlFKUaBVNDAJoFkdAhMCmeUY8+3V9lChoBmgJaA9DCBKkUuxom1VAlIaUUpRoFU3oA2gWR0CE5pP69CeFdX2UKGgGaAloD0MI1EhL5e1DWkCUhpRSlGgVTegDaBZHQIT+8ibDuSh1fZQoaAZoCWgPQwjluFM62LRnQJSGlFKUaBVNmQJoFkdAhR2MGHHmzXV9lChoBmgJaA9DCLTmx19aLltAlIaUUpRoFU3VAmgWR0CFMWWAwwj/dX2UKGgGaAloD0MI4iAhyhd8R0CUhpRSlGgVTegDaBZHQIVQ86xPfsN1fZQoaAZoCWgPQwhFoWXdP7FZwJSGlFKUaBVN5QFoFkdAhWzGPgeijHV9lChoBmgJaA9DCE3Z6Qd1wFXAlIaUUpRoFU2JAmgWR0CFfLRE4NqhdX2UKGgGaAloD0MIADj27LkvZECUhpRSlGgVTcQCaBZHQIWM61kUbkx1fZQoaAZoCWgPQwhnQ/6ZQXldwJSGlFKUaBVNrQJoFkdAhbAJ1q33H3V9lChoBmgJaA9DCLLzNja7V2pAlIaUUpRoFU2qA2gWR0CFyAtwrDqGdX2UKGgGaAloD0MI121Q+60kWMCUhpRSlGgVTUQCaBZHQIXTgkzGgjB1fZQoaAZoCWgPQwiGdePdkQ5YQJSGlFKUaBVN6ANoFkdAhfi8580DU3V9lChoBmgJaA9DCGJnCp1X02lAlIaUUpRoFU2AAmgWR0CGBeMxXXAedX2UKGgGaAloD0MI2qz6XO1zY8CUhpRSlGgVTa4CaBZHQIYT6Rhc7hh1fZQoaAZoCWgPQwgf9GxWfWFnQJSGlFKUaBVNlwJoFkdAhjKBbfP5YnV9lChoBmgJaA9DCBhftMcL3FFAlIaUUpRoFU3oA2gWR0CGTBfsu3+ddX2UKGgGaAloD0MI4uXpXFGvU0CUhpRSlGgVTegDaBZHQIZ06gM+eOJ1fZQoaAZoCWgPQwjqeMxAZZhdwJSGlFKUaBVNLAJoFkdAhn+qIi1RcnV9lChoBmgJaA9DCJM2VffIskVAlIaUUpRoFU3oA2gWR0CGpj38n/kvdX2UKGgGaAloD0MIy74rgv8UZUCUhpRSlGgVTbwCaBZHQIa0xEDyOJd1fZQoaAZoCWgPQwgZxXJLq3NkQJSGlFKUaBVNyAJoFkdAhsYUGmk30nV9lChoBmgJaA9DCMozL4fdUGNAlIaUUpRoFU2fAmgWR0CG6OJTER8MdX2UKGgGaAloD0MI9u6P96p1OUCUhpRSlGgVTegDaBZHQIcAnqPfbbl1fZQoaAZoCWgPQwgOhGQBEwJYwJSGlFKUaBVN1wJoFkdAhw8HRkVer3V9lChoBmgJaA9DCKlr7X2qqidAlIaUUpRoFU3oA2gWR0CHP6MFUyYYdX2UKGgGaAloD0MI7PoFu+FUZECUhpRSlGgVTUICaBZHQIdK4SnLq2V1fZQoaAZoCWgPQwiUUPpCSMliQJSGlFKUaBVNkQJoFkdAh1m8PnSv1XV9lChoBmgJaA9DCKvoD808YVfAlIaUUpRoFU3yAWgWR0CHdG0P6KtQdX2UKGgGaAloD0MIPIidKXQXXMCUhpRSlGgVTYoCaBZHQIeBtFKCg9N1fZQoaAZoCWgPQwjJ42n5AaJmQJSGlFKUaBVNxwNoFkdAh6dLLhaTwHV9lChoBmgJaA9DCAMJih9ju2BAlIaUUpRoFU3MAmgWR0CHtrustCiRdX2UKGgGaAloD0MIrTWU2ovRX0CUhpRSlGgVTdECaBZHQIfK/CfpUxV1fZQoaAZoCWgPQwiGjh1U4hthQJSGlFKUaBVNNANoFkdAh+2TuOS4fHV9lChoBmgJaA9DCLSSVnxDMVbAlIaUUpRoFU3UAmgWR0CH/FMi8nNQdX2UKGgGaAloD0MIih9j7lr/YECUhpRSlGgVTTwDaBZHQIgN0bcXWOJ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 980,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:261c9239cab25e7618d9c7ed6ff1a1c57a49eb57a488b0896ce448552992214a
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e12d4fd7e23b910995ed8f6e700b89e4560e6f2719a2edc2a9748c99c4054036
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:381ea7f4e0394514e08155ef074a7b458a4140ff215dcc8277b1c5ddea23f608
|
3 |
+
size 259090
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -8.835934895779804, "std_reward": 95.04736319163634, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T01:42:21.636094"}
|