File size: 2,052 Bytes
b83fc52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147e93e
b83fc52
 
147e93e
b83fc52
 
 
 
 
 
 
 
 
147e93e
 
 
b83fc52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147e93e
 
 
 
b83fc52
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- financial_phrasebank
metrics:
- f1
- accuracy
model-index:
- name: finetuning-llms-project-2
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: financial_phrasebank
      type: financial_phrasebank
      config: sentences_50agree
      split: train
      args: sentences_50agree
    metrics:
    - name: F1
      type: f1
      value: 0.8330949180475766
    - name: Accuracy
      type: accuracy
      value: 0.8493810178817056
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuning-llms-project-2

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the financial_phrasebank dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5427
- F1: 0.8331
- Accuracy: 0.8494

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| 0.6137        | 0.94  | 100  | 0.5180          | 0.7614 | 0.8061   |
| 0.297         | 1.89  | 200  | 0.4018          | 0.8201 | 0.8425   |
| 0.1648        | 2.83  | 300  | 0.4641          | 0.8327 | 0.8521   |
| 0.0736        | 3.77  | 400  | 0.5427          | 0.8331 | 0.8494   |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.1.0
- Datasets 2.14.5
- Tokenizers 0.14.1