jdchang commited on
Commit
d8f3ab4
1 Parent(s): db02b4a

Upload model

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +63 -0
  3. generation_config.json +7 -0
  4. hf_utils.py +301 -0
  5. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "AutoModelForCausalLMWithRM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "hf_utils.RewardModelConfig",
9
+ "AutoModel": "hf_utils.AutoModelForCausalLMWithRM"
10
+ },
11
+ "base_config": {
12
+ "_name_or_path": "jdchang/llama3-small",
13
+ "architectures": [
14
+ "LlamaForCausalLM"
15
+ ],
16
+ "bos_token_id": 128000,
17
+ "eos_token_id": 128009,
18
+ "hidden_size": 512,
19
+ "intermediate_size": 14336,
20
+ "max_position_embeddings": 8192,
21
+ "model_type": "llama",
22
+ "num_attention_heads": 32,
23
+ "num_hidden_layers": 2,
24
+ "num_key_value_heads": 8,
25
+ "rms_norm_eps": 1e-05,
26
+ "rope_theta": 500000.0,
27
+ "torch_dtype": "float32",
28
+ "use_cache": false,
29
+ "vocab_size": 128257
30
+ },
31
+ "base_model": "jdchang/llama3-small",
32
+ "bias": 0.0,
33
+ "bos_token_id": 128000,
34
+ "eos_token_id": 128009,
35
+ "hidden_act": "silu",
36
+ "hidden_size": 512,
37
+ "initializer_range": 0.02,
38
+ "intermediate_size": 14336,
39
+ "max_position_embeddings": 8192,
40
+ "mlp_bias": false,
41
+ "model_type": "pairwise_rm",
42
+ "n_labels": 1,
43
+ "num_attention_heads": 32,
44
+ "num_hidden_layers": 2,
45
+ "num_key_value_heads": 8,
46
+ "p_dropout": 0.0,
47
+ "pretrain_cfg": {
48
+ "load_in_8bit": false,
49
+ "token": true,
50
+ "trust_remote_code": null
51
+ },
52
+ "pretrained": true,
53
+ "pretraining_tp": 1,
54
+ "return_logits": false,
55
+ "rms_norm_eps": 1e-05,
56
+ "rope_scaling": null,
57
+ "rope_theta": 500000.0,
58
+ "tie_word_embeddings": false,
59
+ "torch_dtype": "float32",
60
+ "transformers_version": "4.43.4",
61
+ "use_cache": false,
62
+ "vocab_size": 128257
63
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "eos_token_id": 128009,
5
+ "transformers_version": "4.43.4",
6
+ "use_cache": false
7
+ }
hf_utils.py ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 MosaicML ComposeRL authors
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ import os
5
+ from copy import deepcopy
6
+ from dataclasses import dataclass
7
+ from typing import (
8
+ Any,
9
+ Optional,
10
+ Union,
11
+ )
12
+
13
+ import numpy as np
14
+ import torch
15
+ import torch.nn as nn
16
+ from transformers import (
17
+ AutoConfig,
18
+ AutoModelForCausalLM,
19
+ PretrainedConfig,
20
+ PreTrainedModel,
21
+ )
22
+ from transformers.modeling_outputs import ModelOutput
23
+
24
+
25
+ @dataclass
26
+ class SequenceClassifierOutput(ModelOutput):
27
+ """Sequence Classification Output.
28
+
29
+ Args:
30
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
31
+ Classification (or regression if config.num_labels==1) loss.
32
+ scores (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
33
+ Classification (or regression if config.num_labels==1) scores (before SoftMax).
34
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
35
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
36
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
37
+ tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
38
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
39
+
40
+ Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
41
+ `past_key_values` input) to speed up sequential decoding.
42
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
43
+ tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
44
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
45
+
46
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
47
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
48
+ tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
49
+ sequence_length)`.
50
+
51
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
52
+ heads.
53
+ """
54
+
55
+ loss: Optional[torch.FloatTensor] = None
56
+ scores: Optional[torch.FloatTensor] = None
57
+ logits: Optional[torch.FloatTensor] = None
58
+ past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None
59
+ hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
60
+ attentions: Optional[tuple[torch.FloatTensor, ...]] = None
61
+
62
+
63
+ class ValueHead(nn.Module):
64
+ """Value head for the transformer which outputs n_labels values."""
65
+
66
+ def __init__(self, n_labels: int, hidden_size: int, p_dropout: float = 0.0):
67
+ super().__init__()
68
+ self.dense = nn.Linear(hidden_size, hidden_size)
69
+ self.dropout = nn.Dropout(p_dropout)
70
+ self.score = nn.Linear(hidden_size, n_labels)
71
+ torch.nn.init.normal_(
72
+ self.score.weight,
73
+ std=1 / np.sqrt(hidden_size + 1),
74
+ )
75
+ torch.nn.init.constant_(self.score.bias, val=0.0)
76
+
77
+ def forward(
78
+ self,
79
+ hidden_states: torch.Tensor,
80
+ **kwargs: Any,
81
+ ) -> torch.Tensor:
82
+ hidden_states = self.dropout(hidden_states)
83
+ hidden_states = self.dense(hidden_states)
84
+ hidden_states = torch.tanh(hidden_states)
85
+ hidden_states = self.dropout(hidden_states)
86
+ output = self.score(hidden_states)
87
+ return output
88
+
89
+
90
+ class RewardModelConfig(PretrainedConfig):
91
+ model_type = 'pairwise_rm'
92
+
93
+ def __init__(
94
+ self,
95
+ base_model: Optional[Union[str, os.PathLike]
96
+ ] = 'meta-llama/Meta-Llama-3-70B-Instruct',
97
+ base_config: Optional[PretrainedConfig] = None,
98
+ p_dropout: float = 0.0,
99
+ n_labels: int = 1,
100
+ bias: float = 0.0,
101
+ return_logits: bool = False,
102
+ pretrain_cfg: Optional[dict[str, Any]] = None,
103
+ pretrained: bool = False,
104
+ **kwargs: Any,
105
+ ):
106
+ super().__init__(**kwargs)
107
+ self.base_model = base_model
108
+ self.base_config = base_config if base_config is not None else AutoConfig.from_pretrained(
109
+ base_model,
110
+ )
111
+ temp_config = deepcopy(self.base_config)
112
+ if not isinstance(temp_config, dict):
113
+ temp_config = temp_config.__dict__
114
+ for key, value in temp_config.items():
115
+ if key not in ['_name_or_path', 'architectures']:
116
+ setattr(self, key, value)
117
+ self.p_dropout = p_dropout
118
+ self.n_labels = n_labels
119
+ self.bias = bias
120
+ self.return_logits = return_logits
121
+ self.pretrain_cfg = pretrain_cfg if pretrain_cfg is not None else {}
122
+ self.pretrained = pretrained
123
+
124
+
125
+ class AutoModelForCausalLMWithRM(PreTrainedModel):
126
+ config_class = RewardModelConfig
127
+
128
+ def __init__(self, config: RewardModelConfig):
129
+ super().__init__(config)
130
+ self.config = config
131
+ pretrain_cfg = config.pretrain_cfg
132
+ pretrained = config.pretrained
133
+ if pretrained:
134
+ self.lm_backbone = AutoModelForCausalLM.from_pretrained(
135
+ config.base_model,
136
+ config=config.base_config,
137
+ **pretrain_cfg,
138
+ )
139
+ else:
140
+ #hack for now
141
+ if isinstance(config.base_config, dict):
142
+ config.base_config = AutoConfig.from_pretrained(
143
+ config.base_model,
144
+ **config.base_config,
145
+ )
146
+ self.lm_backbone = AutoModelForCausalLM.from_config(
147
+ config.base_config,
148
+ trust_remote_code=True,
149
+ )
150
+ self.value_head = ValueHead(
151
+ n_labels=self.config.n_labels,
152
+ hidden_size=self.config.hidden_size,
153
+ p_dropout=self.config.p_dropout,
154
+ )
155
+
156
+ def generate(self, *args: Any, **kwargs: Any):
157
+ return self.lm_backbone.generate(**kwargs)
158
+
159
+ def resize_token_embeddings(
160
+ self,
161
+ new_num_tokens: Optional[int] = None,
162
+ pad_to_multiple_of: Optional[int] = None,
163
+ ) -> nn.Embedding:
164
+ # Note need to update vocab size in base config as well so lm_head modification happens
165
+ self.config.base_config.vocab_size = new_num_tokens
166
+ model_embeds = super().resize_token_embeddings(
167
+ new_num_tokens=new_num_tokens,
168
+ pad_to_multiple_of=pad_to_multiple_of,
169
+ )
170
+ return model_embeds
171
+
172
+ def set_input_embeddings(self, new_embeddings: Any):
173
+ return self.lm_backbone.set_input_embeddings(new_embeddings)
174
+
175
+ def get_input_embeddings(self):
176
+ return self.lm_backbone.get_input_embeddings()
177
+
178
+ def set_output_embeddings(self, new_embeddings: Any):
179
+ return self.lm_backbone.set_output_embeddings(new_embeddings)
180
+
181
+ def get_output_embeddings(self):
182
+ return self.lm_backbone.get_output_embeddings()
183
+
184
+ def forward(
185
+ self,
186
+ input_ids: Optional[torch.LongTensor] = None,
187
+ attention_mask: Optional[torch.Tensor] = None,
188
+ position_ids: Optional[torch.LongTensor] = None,
189
+ past_key_values: Optional[Any] = None,
190
+ inputs_embeds: Optional[torch.FloatTensor] = None,
191
+ labels: Optional[torch.LongTensor] = None,
192
+ use_cache: Optional[bool] = None,
193
+ output_attentions: Optional[bool] = None,
194
+ output_hidden_states: Optional[bool] = None,
195
+ return_dict: Optional[bool] = None,
196
+ cache_position: Optional[torch.LongTensor] = None,
197
+ **kwargs: Any,
198
+ ):
199
+ output = self.lm_backbone(
200
+ input_ids=input_ids,
201
+ attention_mask=attention_mask,
202
+ position_ids=position_ids,
203
+ past_key_values=past_key_values,
204
+ inputs_embeds=inputs_embeds,
205
+ labels=labels,
206
+ use_cache=use_cache,
207
+ output_attentions=output_attentions,
208
+ output_hidden_states=True,
209
+ return_dict=True,
210
+ cache_position=cache_position,
211
+ )
212
+ scores = self.value_head(
213
+ output.hidden_states[-1],
214
+ ).squeeze(-1) - self.config.bias
215
+
216
+ logits = None
217
+ if self.config.return_logits:
218
+ logits = output.logits
219
+
220
+ return SequenceClassifierOutput(
221
+ loss=output.loss,
222
+ scores=scores,
223
+ logits=logits,
224
+ past_key_values=output.past_key_values,
225
+ hidden_states=output.hidden_states,
226
+ attentions=output.attentions,
227
+ )
228
+
229
+ @classmethod
230
+ def from_config(
231
+ cls,
232
+ config: PretrainedConfig,
233
+ **kwargs: Any,
234
+ ) -> PreTrainedModel:
235
+ return cls._from_config(config, **kwargs)
236
+
237
+ @classmethod
238
+ def from_pretrained(
239
+ cls,
240
+ pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
241
+ *model_args: Any,
242
+ config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
243
+ cache_dir: Optional[Union[str, os.PathLike]] = None,
244
+ ignore_mismatched_sizes: bool = False,
245
+ force_download: bool = False,
246
+ local_files_only: bool = False,
247
+ token: Optional[Union[str, bool]] = None,
248
+ revision: str = 'main',
249
+ use_safetensors: Optional[bool] = None,
250
+ **kwargs: Any,
251
+ ) -> PreTrainedModel:
252
+ trust_remote_code = kwargs.pop('trust_remote_code', None)
253
+ use_flash_attention_2 = kwargs.pop('use_flash_attention_2', False)
254
+ return_lm_logits = kwargs.pop('return_lm_logits', False)
255
+ load_in_8bit = kwargs.pop('load_in_8bit', False)
256
+
257
+ requested_attention_implementation = 'flash_attention_2' if use_flash_attention_2 else 'eager'
258
+
259
+ pretrained_model_config = AutoConfig.from_pretrained(
260
+ pretrained_model_name_or_path,
261
+ trust_remote_code=trust_remote_code,
262
+ token=True,
263
+ attn_implementation=requested_attention_implementation,
264
+ use_cache=False,
265
+ )
266
+
267
+ if isinstance(pretrained_model_config, cls.config_class):
268
+ return super().from_pretrained(
269
+ pretrained_model_name_or_path,
270
+ *model_args,
271
+ config,
272
+ cache_dir,
273
+ ignore_mismatched_sizes,
274
+ force_download,
275
+ local_files_only,
276
+ token,
277
+ revision,
278
+ use_safetensors,
279
+ **kwargs,
280
+ )
281
+
282
+ pretrain_cfg = {
283
+ 'trust_remote_code': trust_remote_code,
284
+ 'token': True,
285
+ 'load_in_8bit': load_in_8bit,
286
+ }
287
+
288
+ reward_model_config = RewardModelConfig(
289
+ base_model=pretrained_model_name_or_path,
290
+ base_config=pretrained_model_config,
291
+ hidden_size=pretrained_model_config.hidden_size,
292
+ torch_dtype=pretrained_model_config.torch_dtype,
293
+ return_logits=return_lm_logits,
294
+ vocab_size=pretrained_model_config.vocab_size,
295
+ pretrained=True,
296
+ pretrain_cfg=pretrain_cfg,
297
+ )
298
+
299
+ model = cls(reward_model_config)
300
+
301
+ return model
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:325f61b549410374cd5b1ead77043e6b79383b429a0bdeffa7d89102f4f65b64
3
+ size 707810180