File size: 2,097 Bytes
d23505f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Mistral-7B-v0.1-GPTQ
model-index:
- name: mistral-7b-nli_cot_qkv
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral-7b-nli_cot_qkv
This model is a fine-tuned version of [TheBloke/Mistral-7B-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-GPTQ) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7749
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:-----:|:---------------:|
| 0.426 | 0.9998 | 1196 | 0.4255 |
| 0.3664 | 1.9996 | 2392 | 0.4365 |
| 0.3221 | 2.9994 | 3588 | 0.4455 |
| 0.2804 | 4.0 | 4785 | 0.4577 |
| 0.2403 | 4.9998 | 5981 | 0.4719 |
| 0.2001 | 5.9996 | 7177 | 0.4948 |
| 0.1643 | 6.9994 | 8373 | 0.5278 |
| 0.1305 | 8.0 | 9570 | 0.5634 |
| 0.1011 | 8.9998 | 10766 | 0.6095 |
| 0.0768 | 9.9996 | 11962 | 0.6621 |
| 0.0577 | 10.9994 | 13158 | 0.7225 |
| 0.0445 | 11.9975 | 14352 | 0.7749 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.0.1+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1 |