jcranney commited on
Commit
fa3dc96
·
1 Parent(s): cbe44bf

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 269.91 +/- 16.76
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f218b0f24c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f218b0f2550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f218b0f25e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f218b0f2670>", "_build": "<function ActorCriticPolicy._build at 0x7f218b0f2700>", "forward": "<function ActorCriticPolicy.forward at 0x7f218b0f2790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f218b0f2820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f218b0f28b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f218b0f2940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f218b0f29d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f218b0f2a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f218b0e9d50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1785856, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651759977.9962516, "learning_rate": 0.0003, "tensorboard_log": "tblog", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFMvaG9tZS9qY3Jhbm5leS8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUy9ob21lL2pjcmFubmV5Ly5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACK072C4vs+6vetPSMXqr5lVMq9Wuo8vQAAAAAAAAAAwPWhPSlcM7otkn47PzWrNj1ZhjulxJS6AACAPwAAgD8N3LE99a7bPhZQIr7QXLS+g+JqvPY4OzwAAAAAAAAAAAAGWj0pkAW6pr1Vu0QzQ7Uw7Lk6mJJ4OgAAgD8AAIA/Giu8PYXznLlG6ns4IkCrMs8l3LnXdJK3AAAAAAAAgD+mi4Y9e0Kdur0Urrrvh4e1eUaaOULaxjkAAIA/AACAPzMQOj24Fpy5KsJhu7kEjzjWjhY8ze7+OQAAgD8AAIA/5q1nPWyoqjz4qjA6+kd1vvDt1DxYsFo9AAAAAAAAAADNKfm8SAebuuiZzrsd4pk0O5gQugsdErQAAIA/AACAP5rwwjwpGES6snqEuiIff7YMPXa65m/oNQAAgD8AAIA/mtXgPK55o7oNyUu7N+0KtrtQRTqSf2o6AACAPwAAgD+a8B89w2l9ugyyKrt8su414+1sOho+QjoAAIA/AACAP5rJ2zykrDM8cJHtPUEebr4ytYQ9Ri7AvAAAAAAAAAAAeu9ZPiQSDb1Sosc8Y4wkPNite76uI3g7AAAAAAAAAABmwtQ7e76Wut6UgzpryHo13fkeOZo1mLkAAIA/AACAP1iIir7lQHM/dWwPvkmXLr/gMea+VSTYvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.10707199999999994, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvF0vTREEP0CUhpRSlIwBbJRLpowBdJRHQKPmmuyNXHR1fZQoaAZoCWgPQwjsihnh7XpoQJSGlFKUaBVN6ANoFkdAo+e3K8tf5XV9lChoBmgJaA9DCJ/pJcYy4GRAlIaUUpRoFU3oA2gWR0Cj59CAMDwIdX2UKGgGaAloD0MIGJY/3xYGZUCUhpRSlGgVTegDaBZHQKPoPeTmnwZ1fZQoaAZoCWgPQwgs8YCyqTJkQJSGlFKUaBVN6ANoFkdAo+iFEiMYM3V9lChoBmgJaA9DCC5ZFeEmH2dAlIaUUpRoFU3oA2gWR0Cj6aY5T6zmdX2UKGgGaAloD0MIw5s1eF/CY0CUhpRSlGgVTegDaBZHQKPppxDLKV91fZQoaAZoCWgPQwgfMXpuoclHQJSGlFKUaBVLrGgWR0Cj6bitRvWIdX2UKGgGaAloD0MIIF9CBYdPT0CUhpRSlGgVS5poFkdAo+pSzAvcrXV9lChoBmgJaA9DCJONB1vstkhAlIaUUpRoFUuxaBZHQKPqx1DjR2N1fZQoaAZoCWgPQwjwpIXLKrJnQJSGlFKUaBVN6ANoFkdAo+wSGxlg+nV9lChoBmgJaA9DCHEbDeCt3GNAlIaUUpRoFU3oA2gWR0Cj7EIis4kvdX2UKGgGaAloD0MIdF5jl6jSSUCUhpRSlGgVS5loFkdApAkfSWqtHXV9lChoBmgJaA9DCFCMLJlj5mJAlIaUUpRoFU3oA2gWR0CkCe6aCtihdX2UKGgGaAloD0MIoKnXLQK0YUCUhpRSlGgVTegDaBZHQKQNsEbo8p11fZQoaAZoCWgPQwgEWOTXj8BmQJSGlFKUaBVN6ANoFkdApA44TAWSEHV9lChoBmgJaA9DCDttjQjGG2VAlIaUUpRoFU3oA2gWR0CkENbXxvvSdX2UKGgGaAloD0MItixfl+GjMkCUhpRSlGgVS6doFkdApBFFCJGe+XV9lChoBmgJaA9DCAkX8gjugGlAlIaUUpRoFU3oA2gWR0CkErood+5OdX2UKGgGaAloD0MIL75oj5fTZECUhpRSlGgVTegDaBZHQKQTbfBvaUR1fZQoaAZoCWgPQwi/DMaIxONiQJSGlFKUaBVN6ANoFkdApBTqtcObzHV9lChoBmgJaA9DCJIhx9YzN2JAlIaUUpRoFU3oA2gWR0CkFyu1OTJRdX2UKGgGaAloD0MIbAVNSyzdZkCUhpRSlGgVTegDaBZHQKQXfTJhfBx1fZQoaAZoCWgPQwgGL/oKUkRoQJSGlFKUaBVN6ANoFkdApBjL7sOXmnV9lChoBmgJaA9DCJW6ZBwjl2NAlIaUUpRoFU3oA2gWR0CkGMzj/+85dX2UKGgGaAloD0MI9pZyvtjKY0CUhpRSlGgVTegDaBZHQKQY4FWXC0p1fZQoaAZoCWgPQwgIHt/eNQtiQJSGlFKUaBVN6ANoFkdApBmGyquKXXV9lChoBmgJaA9DCFw65jxjQmNAlIaUUpRoFU3oA2gWR0CkG1C6g/TtdX2UKGgGaAloD0MIehfvx21/ZkCUhpRSlGgVTegDaBZHQKQbgZYPoV51fZQoaAZoCWgPQwgcsRafAg5NQJSGlFKUaBVLomgWR0CkG5vtMPBjdX2UKGgGaAloD0MIg4dp39wEZkCUhpRSlGgVTegDaBZHQKQcpF6zE751fZQoaAZoCWgPQwg02qoksvNjQJSGlFKUaBVN6ANoFkdApDkaYG+sYHV9lChoBmgJaA9DCKt14nI8C2VAlIaUUpRoFU3oA2gWR0CkPSD+R5kcdX2UKGgGaAloD0MIJCcTt4oRZkCUhpRSlGgVTegDaBZHQKQ/whcJMQF1fZQoaAZoCWgPQwiOHyqNmFhkQJSGlFKUaBVN6ANoFkdApEAwU34sVnV9lChoBmgJaA9DCNeH9Uat52ZAlIaUUpRoFU3oA2gWR0CkQZyHdoFndX2UKGgGaAloD0MId4TTgpe+YECUhpRSlGgVTegDaBZHQKRCU6+WWyF1fZQoaAZoCWgPQwjrqkAtBvc5QJSGlFKUaBVLg2gWR0CkQsdIXj2jdX2UKGgGaAloD0MITweynlrJY0CUhpRSlGgVTegDaBZHQKRD4Ltu1nd1fZQoaAZoCWgPQwhr1hnfFzVNQJSGlFKUaBVLlmgWR0CkRbOMVDa5dX2UKGgGaAloD0MIz77yIL0kZ0CUhpRSlGgVTegDaBZHQKRGJkU9IPN1fZQoaAZoCWgPQwjpYP2fQzxgQJSGlFKUaBVN6ANoFkdApEZ3WWhRInV9lChoBmgJaA9DCDCeQUN/OWJAlIaUUpRoFU3oA2gWR0CkR8WldkaudX2UKGgGaAloD0MI1XYTfNOIaUCUhpRSlGgVTegDaBZHQKRH21l5GBp1fZQoaAZoCWgPQwjex9Ec2fZjQJSGlFKUaBVN6ANoFkdApEiMbrC3w3V9lChoBmgJaA9DCLWoT3KHd2VAlIaUUpRoFU3oA2gWR0CkSpDFZPl/dX2UKGgGaAloD0MIh913DI8lZkCUhpRSlGgVTegDaBZHQKRKxzltCRh1fZQoaAZoCWgPQwg6lQwA1R9kQJSGlFKUaBVN6ANoFkdApErk4Nqgy3V9lChoBmgJaA9DCBrfF5eq5GRAlIaUUpRoFU3oA2gWR0CkTAFaB7NTdX2UKGgGaAloD0MIR8zs8xh8YECUhpRSlGgVTegDaBZHQKRogQVbiZR1fZQoaAZoCWgPQwiT4Xg+A75oQJSGlFKUaBVN6ANoFkdApGzQ/JNj9XV9lChoBmgJaA9DCAB1AwVeiGNAlIaUUpRoFU3oA2gWR0Ckb8QpF1B/dX2UKGgGaAloD0MI0lPkEPH6ZUCUhpRSlGgVTegDaBZHQKRx7J/5Lyt1fZQoaAZoCWgPQwjQtpp1xnlkQJSGlFKUaBVN6ANoFkdApHK7/uLJjnV9lChoBmgJaA9DCCKphZJJ/2RAlIaUUpRoFU3oA2gWR0CkdGwYcebNdX2UKGgGaAloD0MIB+xq8hQ1ZkCUhpRSlGgVTegDaBZHQKR2fIg/1QJ1fZQoaAZoCWgPQwhCeoocIuZmQJSGlFKUaBVN6ANoFkdApHb4Enssx3V9lChoBmgJaA9DCI9SCU/oBmJAlIaUUpRoFU3oA2gWR0Ckd0/cN6PbdX2UKGgGaAloD0MIE0TdByBfXUCUhpRSlGgVTegDaBZHQKR4q+mm+Cd1fZQoaAZoCWgPQwgWo661d/1gQJSGlFKUaBVN6ANoFkdApHjCpPykK3V9lChoBmgJaA9DCH+l8+FZimZAlIaUUpRoFU3oA2gWR0CkeXoaUA1fdX2UKGgGaAloD0MIhUAuceSQYkCUhpRSlGgVTegDaBZHQKR7iFotcwB1fZQoaAZoCWgPQwjvA5DaRBRiQJSGlFKUaBVN6ANoFkdApHu/e1rqMXV9lChoBmgJaA9DCNiC3hvDMmdAlIaUUpRoFU3oA2gWR0Cke9305EMLdX2UKGgGaAloD0MIzO80mfF5ZECUhpRSlGgVTegDaBZHQKR8/HpbD/F1fZQoaAZoCWgPQwgUBI9v7+9SQJSGlFKUaBVLtmgWR0CkfQFrVOKwdX2UKGgGaAloD0MI1uJTAIxIXkCUhpRSlGgVTegDaBZHQKR9vZU1hst1fZQoaAZoCWgPQwj5ugz/aTBnQJSGlFKUaBVN6ANoFkdApJ2lNahYeXV9lChoBmgJaA9DCCaqtwY2DGNAlIaUUpRoFU3oA2gWR0CkoJ2mxdIHdX2UKGgGaAloD0MIK/htiPF8YkCUhpRSlGgVTegDaBZHQKSisHgxagV1fZQoaAZoCWgPQwh5c7hWe4FlQJSGlFKUaBVN6ANoFkdApKOHGwRoRXV9lChoBmgJaA9DCDATRUjd9GJAlIaUUpRoFU3oA2gWR0CkpUd/z8P4dX2UKGgGaAloD0MI0Xe3ssQ+Z0CUhpRSlGgVTegDaBZHQKSnXBOYYzl1fZQoaAZoCWgPQwhagoyAChVlQJSGlFKUaBVN6ANoFkdApKfY08/2TXV9lChoBmgJaA9DCLaCpiXW0WNAlIaUUpRoFU3oA2gWR0CkqC67dznzdX2UKGgGaAloD0MIf95UpMI9ZECUhpRSlGgVTegDaBZHQKSpjA9mpVF1fZQoaAZoCWgPQwgBTBk4oPJgQJSGlFKUaBVN6ANoFkdApKmh7PY4AHV9lChoBmgJaA9DCBe6EoHqo2dAlIaUUpRoFU3oA2gWR0CkrIJbt7a7dX2UKGgGaAloD0MILlbUYBoDYkCUhpRSlGgVTegDaBZHQKSsv+DvmYB1fZQoaAZoCWgPQwi7RWCs7wJhQJSGlFKUaBVN6ANoFkdApKzgeRxLkHV9lChoBmgJaA9DCJEqilfZWmJAlIaUUpRoFU3oA2gWR0Ckrh/rSmZWdX2UKGgGaAloD0MIUHPyIhMIY0CUhpRSlGgVTegDaBZHQKSuJaCcwxp1fZQoaAZoCWgPQwih2AqalhdlQJSGlFKUaBVN6ANoFkdApK7vnOjZc3V9lChoBmgJaA9DCCwpd5/j/lBAlIaUUpRoFUvBaBZHQKTMX9deIEd1fZQoaAZoCWgPQwjBqKROwPdmQJSGlFKUaBVN6ANoFkdApM7T8UEgXHV9lChoBmgJaA9DCNRjWwac22FAlIaUUpRoFU3oA2gWR0Ck0alrVOKwdX2UKGgGaAloD0MIgQpHkEpOaECUhpRSlGgVTegDaBZHQKTTwgA6uGN1fZQoaAZoCWgPQwh7wDxkyrBiQJSGlFKUaBVN6ANoFkdApNSa8WbgCXV9lChoBmgJaA9DCFJkraHU8EdAlIaUUpRoFUulaBZHQKTVcQHRkVh1fZQoaAZoCWgPQwjFBDV8i3lkQJSGlFKUaBVN6ANoFkdApNZpXCCSR3V9lChoBmgJaA9DCLQDrivme2NAlIaUUpRoFU3oA2gWR0Ck2IEjPfKqdX2UKGgGaAloD0MIIbByaJEDZECUhpRSlGgVTegDaBZHQKTY9ngYP5J1fZQoaAZoCWgPQwh5AfbRKaFoQJSGlFKUaBVN6ANoFkdApNlHLidauHV9lChoBmgJaA9DCFBu2/eoPGVAlIaUUpRoFU3oA2gWR0Ck2pYFiay9dX2UKGgGaAloD0MI3XniOduQZECUhpRSlGgVTegDaBZHQKTarBJqZc91fZQoaAZoCWgPQwjxgojUtIBkQJSGlFKUaBVN6ANoFkdApN2CU1Q663V9lChoBmgJaA9DCLd++s+aJGdAlIaUUpRoFU3oA2gWR0Ck3b5ckdFOdX2UKGgGaAloD0MIpYKKqt9KZUCUhpRSlGgVTegDaBZHQKTfOQKa5PN1fZQoaAZoCWgPQwiZg6CjVT5fQJSGlFKUaBVN6ANoFkdApN8/WSU1RHV9lChoBmgJaA9DCD0s1Jrms2VAlIaUUpRoFU3oA2gWR0Ck4BwFC9h7dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 432, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 16, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFMvaG9tZS9qY3Jhbm5leS8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUy9ob21lL2pjcmFubmV5Ly5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-4.18.0-305.7.1.el8_4.x86_64-x86_64-with-glibc2.10 #1 SMP Thu Jul 1 02:25:14 EDT 2021", "Python": "3.8.5", "Stable-Baselines3": "1.5.0", "PyTorch": "1.8.1+cu102", "GPU Enabled": "True", "Numpy": "1.22.2", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0599e120a6292be88fb7798743ba7dac088d6c13a050817ab89f63b68ae657a8
3
+ size 146029
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f218b0f24c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f218b0f2550>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f218b0f25e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f218b0f2670>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f218b0f2700>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f218b0f2790>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f218b0f2820>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f218b0f28b0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f218b0f2940>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f218b0f29d0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f218b0f2a60>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f218b0e9d50>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1785856,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651759977.9962516,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": "tblog",
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFMvaG9tZS9qY3Jhbm5leS8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUy9ob21lL2pjcmFubmV5Ly5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACK072C4vs+6vetPSMXqr5lVMq9Wuo8vQAAAAAAAAAAwPWhPSlcM7otkn47PzWrNj1ZhjulxJS6AACAPwAAgD8N3LE99a7bPhZQIr7QXLS+g+JqvPY4OzwAAAAAAAAAAAAGWj0pkAW6pr1Vu0QzQ7Uw7Lk6mJJ4OgAAgD8AAIA/Giu8PYXznLlG6ns4IkCrMs8l3LnXdJK3AAAAAAAAgD+mi4Y9e0Kdur0Urrrvh4e1eUaaOULaxjkAAIA/AACAPzMQOj24Fpy5KsJhu7kEjzjWjhY8ze7+OQAAgD8AAIA/5q1nPWyoqjz4qjA6+kd1vvDt1DxYsFo9AAAAAAAAAADNKfm8SAebuuiZzrsd4pk0O5gQugsdErQAAIA/AACAP5rwwjwpGES6snqEuiIff7YMPXa65m/oNQAAgD8AAIA/mtXgPK55o7oNyUu7N+0KtrtQRTqSf2o6AACAPwAAgD+a8B89w2l9ugyyKrt8su414+1sOho+QjoAAIA/AACAP5rJ2zykrDM8cJHtPUEebr4ytYQ9Ri7AvAAAAAAAAAAAeu9ZPiQSDb1Sosc8Y4wkPNite76uI3g7AAAAAAAAAABmwtQ7e76Wut6UgzpryHo13fkeOZo1mLkAAIA/AACAP1iIir7lQHM/dWwPvkmXLr/gMea+VSTYvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": 0.10707199999999994,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvF0vTREEP0CUhpRSlIwBbJRLpowBdJRHQKPmmuyNXHR1fZQoaAZoCWgPQwjsihnh7XpoQJSGlFKUaBVN6ANoFkdAo+e3K8tf5XV9lChoBmgJaA9DCJ/pJcYy4GRAlIaUUpRoFU3oA2gWR0Cj59CAMDwIdX2UKGgGaAloD0MIGJY/3xYGZUCUhpRSlGgVTegDaBZHQKPoPeTmnwZ1fZQoaAZoCWgPQwgs8YCyqTJkQJSGlFKUaBVN6ANoFkdAo+iFEiMYM3V9lChoBmgJaA9DCC5ZFeEmH2dAlIaUUpRoFU3oA2gWR0Cj6aY5T6zmdX2UKGgGaAloD0MIw5s1eF/CY0CUhpRSlGgVTegDaBZHQKPppxDLKV91fZQoaAZoCWgPQwgfMXpuoclHQJSGlFKUaBVLrGgWR0Cj6bitRvWIdX2UKGgGaAloD0MIIF9CBYdPT0CUhpRSlGgVS5poFkdAo+pSzAvcrXV9lChoBmgJaA9DCJONB1vstkhAlIaUUpRoFUuxaBZHQKPqx1DjR2N1fZQoaAZoCWgPQwjwpIXLKrJnQJSGlFKUaBVN6ANoFkdAo+wSGxlg+nV9lChoBmgJaA9DCHEbDeCt3GNAlIaUUpRoFU3oA2gWR0Cj7EIis4kvdX2UKGgGaAloD0MIdF5jl6jSSUCUhpRSlGgVS5loFkdApAkfSWqtHXV9lChoBmgJaA9DCFCMLJlj5mJAlIaUUpRoFU3oA2gWR0CkCe6aCtihdX2UKGgGaAloD0MIoKnXLQK0YUCUhpRSlGgVTegDaBZHQKQNsEbo8p11fZQoaAZoCWgPQwgEWOTXj8BmQJSGlFKUaBVN6ANoFkdApA44TAWSEHV9lChoBmgJaA9DCDttjQjGG2VAlIaUUpRoFU3oA2gWR0CkENbXxvvSdX2UKGgGaAloD0MItixfl+GjMkCUhpRSlGgVS6doFkdApBFFCJGe+XV9lChoBmgJaA9DCAkX8gjugGlAlIaUUpRoFU3oA2gWR0CkErood+5OdX2UKGgGaAloD0MIL75oj5fTZECUhpRSlGgVTegDaBZHQKQTbfBvaUR1fZQoaAZoCWgPQwi/DMaIxONiQJSGlFKUaBVN6ANoFkdApBTqtcObzHV9lChoBmgJaA9DCJIhx9YzN2JAlIaUUpRoFU3oA2gWR0CkFyu1OTJRdX2UKGgGaAloD0MIbAVNSyzdZkCUhpRSlGgVTegDaBZHQKQXfTJhfBx1fZQoaAZoCWgPQwgGL/oKUkRoQJSGlFKUaBVN6ANoFkdApBjL7sOXmnV9lChoBmgJaA9DCJW6ZBwjl2NAlIaUUpRoFU3oA2gWR0CkGMzj/+85dX2UKGgGaAloD0MI9pZyvtjKY0CUhpRSlGgVTegDaBZHQKQY4FWXC0p1fZQoaAZoCWgPQwgIHt/eNQtiQJSGlFKUaBVN6ANoFkdApBmGyquKXXV9lChoBmgJaA9DCFw65jxjQmNAlIaUUpRoFU3oA2gWR0CkG1C6g/TtdX2UKGgGaAloD0MIehfvx21/ZkCUhpRSlGgVTegDaBZHQKQbgZYPoV51fZQoaAZoCWgPQwgcsRafAg5NQJSGlFKUaBVLomgWR0CkG5vtMPBjdX2UKGgGaAloD0MIg4dp39wEZkCUhpRSlGgVTegDaBZHQKQcpF6zE751fZQoaAZoCWgPQwg02qoksvNjQJSGlFKUaBVN6ANoFkdApDkaYG+sYHV9lChoBmgJaA9DCKt14nI8C2VAlIaUUpRoFU3oA2gWR0CkPSD+R5kcdX2UKGgGaAloD0MIJCcTt4oRZkCUhpRSlGgVTegDaBZHQKQ/whcJMQF1fZQoaAZoCWgPQwiOHyqNmFhkQJSGlFKUaBVN6ANoFkdApEAwU34sVnV9lChoBmgJaA9DCNeH9Uat52ZAlIaUUpRoFU3oA2gWR0CkQZyHdoFndX2UKGgGaAloD0MId4TTgpe+YECUhpRSlGgVTegDaBZHQKRCU6+WWyF1fZQoaAZoCWgPQwjrqkAtBvc5QJSGlFKUaBVLg2gWR0CkQsdIXj2jdX2UKGgGaAloD0MITweynlrJY0CUhpRSlGgVTegDaBZHQKRD4Ltu1nd1fZQoaAZoCWgPQwhr1hnfFzVNQJSGlFKUaBVLlmgWR0CkRbOMVDa5dX2UKGgGaAloD0MIz77yIL0kZ0CUhpRSlGgVTegDaBZHQKRGJkU9IPN1fZQoaAZoCWgPQwjpYP2fQzxgQJSGlFKUaBVN6ANoFkdApEZ3WWhRInV9lChoBmgJaA9DCDCeQUN/OWJAlIaUUpRoFU3oA2gWR0CkR8WldkaudX2UKGgGaAloD0MI1XYTfNOIaUCUhpRSlGgVTegDaBZHQKRH21l5GBp1fZQoaAZoCWgPQwjex9Ec2fZjQJSGlFKUaBVN6ANoFkdApEiMbrC3w3V9lChoBmgJaA9DCLWoT3KHd2VAlIaUUpRoFU3oA2gWR0CkSpDFZPl/dX2UKGgGaAloD0MIh913DI8lZkCUhpRSlGgVTegDaBZHQKRKxzltCRh1fZQoaAZoCWgPQwg6lQwA1R9kQJSGlFKUaBVN6ANoFkdApErk4Nqgy3V9lChoBmgJaA9DCBrfF5eq5GRAlIaUUpRoFU3oA2gWR0CkTAFaB7NTdX2UKGgGaAloD0MIR8zs8xh8YECUhpRSlGgVTegDaBZHQKRogQVbiZR1fZQoaAZoCWgPQwiT4Xg+A75oQJSGlFKUaBVN6ANoFkdApGzQ/JNj9XV9lChoBmgJaA9DCAB1AwVeiGNAlIaUUpRoFU3oA2gWR0Ckb8QpF1B/dX2UKGgGaAloD0MI0lPkEPH6ZUCUhpRSlGgVTegDaBZHQKRx7J/5Lyt1fZQoaAZoCWgPQwjQtpp1xnlkQJSGlFKUaBVN6ANoFkdApHK7/uLJjnV9lChoBmgJaA9DCCKphZJJ/2RAlIaUUpRoFU3oA2gWR0CkdGwYcebNdX2UKGgGaAloD0MIB+xq8hQ1ZkCUhpRSlGgVTegDaBZHQKR2fIg/1QJ1fZQoaAZoCWgPQwhCeoocIuZmQJSGlFKUaBVN6ANoFkdApHb4Enssx3V9lChoBmgJaA9DCI9SCU/oBmJAlIaUUpRoFU3oA2gWR0Ckd0/cN6PbdX2UKGgGaAloD0MIE0TdByBfXUCUhpRSlGgVTegDaBZHQKR4q+mm+Cd1fZQoaAZoCWgPQwgWo661d/1gQJSGlFKUaBVN6ANoFkdApHjCpPykK3V9lChoBmgJaA9DCH+l8+FZimZAlIaUUpRoFU3oA2gWR0CkeXoaUA1fdX2UKGgGaAloD0MIhUAuceSQYkCUhpRSlGgVTegDaBZHQKR7iFotcwB1fZQoaAZoCWgPQwjvA5DaRBRiQJSGlFKUaBVN6ANoFkdApHu/e1rqMXV9lChoBmgJaA9DCNiC3hvDMmdAlIaUUpRoFU3oA2gWR0Cke9305EMLdX2UKGgGaAloD0MIzO80mfF5ZECUhpRSlGgVTegDaBZHQKR8/HpbD/F1fZQoaAZoCWgPQwgUBI9v7+9SQJSGlFKUaBVLtmgWR0CkfQFrVOKwdX2UKGgGaAloD0MI1uJTAIxIXkCUhpRSlGgVTegDaBZHQKR9vZU1hst1fZQoaAZoCWgPQwj5ugz/aTBnQJSGlFKUaBVN6ANoFkdApJ2lNahYeXV9lChoBmgJaA9DCCaqtwY2DGNAlIaUUpRoFU3oA2gWR0CkoJ2mxdIHdX2UKGgGaAloD0MIK/htiPF8YkCUhpRSlGgVTegDaBZHQKSisHgxagV1fZQoaAZoCWgPQwh5c7hWe4FlQJSGlFKUaBVN6ANoFkdApKOHGwRoRXV9lChoBmgJaA9DCDATRUjd9GJAlIaUUpRoFU3oA2gWR0CkpUd/z8P4dX2UKGgGaAloD0MI0Xe3ssQ+Z0CUhpRSlGgVTegDaBZHQKSnXBOYYzl1fZQoaAZoCWgPQwhagoyAChVlQJSGlFKUaBVN6ANoFkdApKfY08/2TXV9lChoBmgJaA9DCLaCpiXW0WNAlIaUUpRoFU3oA2gWR0CkqC67dznzdX2UKGgGaAloD0MIf95UpMI9ZECUhpRSlGgVTegDaBZHQKSpjA9mpVF1fZQoaAZoCWgPQwgBTBk4oPJgQJSGlFKUaBVN6ANoFkdApKmh7PY4AHV9lChoBmgJaA9DCBe6EoHqo2dAlIaUUpRoFU3oA2gWR0CkrIJbt7a7dX2UKGgGaAloD0MILlbUYBoDYkCUhpRSlGgVTegDaBZHQKSsv+DvmYB1fZQoaAZoCWgPQwi7RWCs7wJhQJSGlFKUaBVN6ANoFkdApKzgeRxLkHV9lChoBmgJaA9DCJEqilfZWmJAlIaUUpRoFU3oA2gWR0Ckrh/rSmZWdX2UKGgGaAloD0MIUHPyIhMIY0CUhpRSlGgVTegDaBZHQKSuJaCcwxp1fZQoaAZoCWgPQwih2AqalhdlQJSGlFKUaBVN6ANoFkdApK7vnOjZc3V9lChoBmgJaA9DCCwpd5/j/lBAlIaUUpRoFUvBaBZHQKTMX9deIEd1fZQoaAZoCWgPQwjBqKROwPdmQJSGlFKUaBVN6ANoFkdApM7T8UEgXHV9lChoBmgJaA9DCNRjWwac22FAlIaUUpRoFU3oA2gWR0Ck0alrVOKwdX2UKGgGaAloD0MIgQpHkEpOaECUhpRSlGgVTegDaBZHQKTTwgA6uGN1fZQoaAZoCWgPQwh7wDxkyrBiQJSGlFKUaBVN6ANoFkdApNSa8WbgCXV9lChoBmgJaA9DCFJkraHU8EdAlIaUUpRoFUulaBZHQKTVcQHRkVh1fZQoaAZoCWgPQwjFBDV8i3lkQJSGlFKUaBVN6ANoFkdApNZpXCCSR3V9lChoBmgJaA9DCLQDrivme2NAlIaUUpRoFU3oA2gWR0Ck2IEjPfKqdX2UKGgGaAloD0MIIbByaJEDZECUhpRSlGgVTegDaBZHQKTY9ngYP5J1fZQoaAZoCWgPQwh5AfbRKaFoQJSGlFKUaBVN6ANoFkdApNlHLidauHV9lChoBmgJaA9DCFBu2/eoPGVAlIaUUpRoFU3oA2gWR0Ck2pYFiay9dX2UKGgGaAloD0MI3XniOduQZECUhpRSlGgVTegDaBZHQKTarBJqZc91fZQoaAZoCWgPQwjxgojUtIBkQJSGlFKUaBVN6ANoFkdApN2CU1Q663V9lChoBmgJaA9DCLd++s+aJGdAlIaUUpRoFU3oA2gWR0Ck3b5ckdFOdX2UKGgGaAloD0MIpYKKqt9KZUCUhpRSlGgVTegDaBZHQKTfOQKa5PN1fZQoaAZoCWgPQwiZg6CjVT5fQJSGlFKUaBVN6ANoFkdApN8/WSU1RHV9lChoBmgJaA9DCD0s1Jrms2VAlIaUUpRoFU3oA2gWR0Ck4BwFC9h7dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 432,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.05,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 16,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFMvaG9tZS9qY3Jhbm5leS8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUy9ob21lL2pjcmFubmV5Ly5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d2eff0066a083ee4d6e4f877d16d274bfb25cc44c3485f5440d904fb1edee46
3
+ size 85895
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc70afb71f730d380a8f5a67cd7eb61d0c67ca5190518236db19fceae661dcc5
3
+ size 44059
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-4.18.0-305.7.1.el8_4.x86_64-x86_64-with-glibc2.10 #1 SMP Thu Jul 1 02:25:14 EDT 2021
2
+ Python: 3.8.5
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.8.1+cu102
5
+ GPU Enabled: True
6
+ Numpy: 1.22.2
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e087fd8f652016a477ce6de39ba1af77a448015f8eb1bac5ca7b491a75656ea
3
+ size 195339
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 269.9114008518361, "std_reward": 16.759401251314596, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T01:07:23.603324"}