jcramirezpr
commited on
Commit
•
ade98e1
1
Parent(s):
00f48b2
parametrized commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +20 -18
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.64 +/- 0.33
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4911fde494b8b1fa06cbfefdfee62ab488e665231c498a523f61ce2472b815b1
|
3 |
+
size 109537
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -46,19 +48,19 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,29 +68,29 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[-
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd76ec3eb80>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd76ec3fac0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1679335144413042003,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAASUPXPnf9szu+WQw/SUPXPnf9szu+WQw/SUPXPnf9szu+WQw/SUPXPnf9szu+WQw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWMKIv+pBlb/o+lo+xEn1Pu2ePL+CnZi/Ql96Przmzb8MDGw/K0HLvypY/T6sKWg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABJQ9c+d/2zO75ZDD/CC6E9GcObOnrsfj1JQ9c+d/2zO75ZDD/CC6E9GcObOnrsfj1JQ9c+d/2zO75ZDD/CC6E9GcObOnrsfj1JQ9c+d/2zO75ZDD/CC6E9GcObOnrsfj2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[0.42043522 0.00549286 0.54824436]\n [0.42043522 0.00549286 0.54824436]\n [0.42043522 0.00549286 0.54824436]\n [0.42043522 0.00549286 0.54824436]]",
|
62 |
+
"desired_goal": "[[-1.0684309 -1.166074 0.21384776]\n [ 0.4790784 -0.7368 -1.1923068 ]\n [ 0.244504 -1.608604 0.9220588 ]\n [-1.5879263 0.49481326 0.90688586]]",
|
63 |
+
"observation": "[[0.42043522 0.00549286 0.54824436 0.07863571 0.00118837 0.06223724]\n [0.42043522 0.00549286 0.54824436 0.07863571 0.00118837 0.06223724]\n [0.42043522 0.00549286 0.54824436 0.07863571 0.00118837 0.06223724]\n [0.42043522 0.00549286 0.54824436 0.07863571 0.00118837 0.06223724]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfSi0PamuF74R9Ik+nDSMOQMGij3mS5A+/QIUPrUHET4CDoE+R9K9vUT8BL7aeg8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[ 8.7967850e-02 -1.4812721e-01 2.6944020e-01]\n [ 2.6742078e-04 6.7394279e-02 2.8182906e-01]\n [ 1.4454265e-01 1.4163096e-01 2.5206000e-01]\n [-9.2686228e-02 -1.2986857e-01 1.4011708e-01]]",
|
74 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
"_current_progress_remaining": 0.0,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvfvjvWpl47+UhpRSlIwBbJRLMowBdJRHQKhAjhaTwDx1fZQoaAZoCWgPQwhAGHjuPVznv5SGlFKUaBVLMmgWR0CoQE7NSqEOdX2UKGgGaAloD0MIOGvwvioX3b+UhpRSlGgVSzJoFkdAqEABTER8MXV9lChoBmgJaA9DCCKl2TwOg+u/lIaUUpRoFUsyaBZHQKg/wlEZzgd1fZQoaAZoCWgPQwhd+pekMoX0v5SGlFKUaBVLMmgWR0CoQlJfx+a0dX2UKGgGaAloD0MIg/jAjv+C5b+UhpRSlGgVSzJoFkdAqEIUI1LrX3V9lChoBmgJaA9DCPbP04BB0vO/lIaUUpRoFUsyaBZHQKhBx9Oymhx1fZQoaAZoCWgPQwhJE+8AT1rvv5SGlFKUaBVLMmgWR0CoQYoYWLxadX2UKGgGaAloD0MIAoOkT6uo+b+UhpRSlGgVSzJoFkdAqEQax9oexXV9lChoBmgJaA9DCIMvTKYKxuO/lIaUUpRoFUsyaBZHQKhD3A5aNdZ1fZQoaAZoCWgPQwg9fQT+8HP3v5SGlFKUaBVLMmgWR0CoQ5AkcCHRdX2UKGgGaAloD0MISFFn7iFh9L+UhpRSlGgVSzJoFkdAqENSWHDaXnV9lChoBmgJaA9DCMWtghjoWu6/lIaUUpRoFUsyaBZHQKhGAIgNgBt1fZQoaAZoCWgPQwhznUZaKu/vv5SGlFKUaBVLMmgWR0CoRcI/iYLLdX2UKGgGaAloD0MIkrJF0m705b+UhpRSlGgVSzJoFkdAqEV1oi9qUXV9lChoBmgJaA9DCMMpc/ONaO2/lIaUUpRoFUsyaBZHQKhFN9Ujs2N1fZQoaAZoCWgPQwgw8x38xAHcv5SGlFKUaBVLMmgWR0CoR74RmK64dX2UKGgGaAloD0MIBpylZDkJ47+UhpRSlGgVSzJoFkdAqEd/XPJJXnV9lChoBmgJaA9DCM7g7xezpei/lIaUUpRoFUsyaBZHQKhHMrlvIfd1fZQoaAZoCWgPQwizKOyi6AHiv5SGlFKUaBVLMmgWR0CoRvRSHdoGdX2UKGgGaAloD0MID37iAPr97L+UhpRSlGgVSzJoFkdAqEmNTm4iHXV9lChoBmgJaA9DCKA01Cgkmd6/lIaUUpRoFUsyaBZHQKhJTujRD1J1fZQoaAZoCWgPQwg1Y9F0djLjv5SGlFKUaBVLMmgWR0CoSQKSHM2WdX2UKGgGaAloD0MI0egOYmeK4r+UhpRSlGgVSzJoFkdAqEjE3ZPEbnV9lChoBmgJaA9DCIAtr1xvm/G/lIaUUpRoFUsyaBZHQKhKvpeu3c51fZQoaAZoCWgPQwjZeLDFbh/nv5SGlFKUaBVLMmgWR0CoSn8gIQe4dX2UKGgGaAloD0MIJGB0eXO44r+UhpRSlGgVSzJoFkdAqEoxsTFl1HV9lChoBmgJaA9DCEdX6e46G+m/lIaUUpRoFUsyaBZHQKhJ8tGNJe51fZQoaAZoCWgPQwiVZYhjXdzWv5SGlFKUaBVLMmgWR0CoS8ROUMXrdX2UKGgGaAloD0MIMq64OCo35r+UhpRSlGgVSzJoFkdAqEuE6RyOrHV9lChoBmgJaA9DCF8oYDsYsee/lIaUUpRoFUsyaBZHQKhLN3Ux20R1fZQoaAZoCWgPQwj3kVuTbsvrv5SGlFKUaBVLMmgWR0CoSvhuO0b+dX2UKGgGaAloD0MIXFmis8wi97+UhpRSlGgVSzJoFkdAqEzXlOoHcHV9lChoBmgJaA9DCCNKe4MvzPK/lIaUUpRoFUsyaBZHQKhMmDMeOn51fZQoaAZoCWgPQwi4eHjPgeXev5SGlFKUaBVLMmgWR0CoTEqfe1rqdX2UKGgGaAloD0MIZohjXdzG9r+UhpRSlGgVSzJoFkdAqEwLwUg0THV9lChoBmgJaA9DCOi7W1miM+u/lIaUUpRoFUsyaBZHQKhN55Sm65J1fZQoaAZoCWgPQwhQOpFgqpnav5SGlFKUaBVLMmgWR0CoTahfrrxBdX2UKGgGaAloD0MIejiB6bRu3b+UhpRSlGgVSzJoFkdAqE1bKFIuoXV9lChoBmgJaA9DCBU5RNycyu+/lIaUUpRoFUsyaBZHQKhNHGYKIBR1fZQoaAZoCWgPQwj/CS5W1GDdv5SGlFKUaBVLMmgWR0CoTxFVcUuddX2UKGgGaAloD0MILZYi+Uqg7b+UhpRSlGgVSzJoFkdAqE7SGi5/b3V9lChoBmgJaA9DCGba/pWVJu2/lIaUUpRoFUsyaBZHQKhOhaEBbOh1fZQoaAZoCWgPQwj8x0J0CFzyv5SGlFKUaBVLMmgWR0CoTkaHTI/8dX2UKGgGaAloD0MIghspWyRt6b+UhpRSlGgVSzJoFkdAqFAOZiNKiHV9lChoBmgJaA9DCK7wLhfxHeW/lIaUUpRoFUsyaBZHQKhPzxiobXJ1fZQoaAZoCWgPQwgzi1BsBc3gv5SGlFKUaBVLMmgWR0CoT4GOEM9bdX2UKGgGaAloD0MIpItNK4VA37+UhpRSlGgVSzJoFkdAqE9CioKlYXV9lChoBmgJaA9DCO1GH/MBwfK/lIaUUpRoFUsyaBZHQKhRP+I/JNl1fZQoaAZoCWgPQwi+iSE5mTjwv5SGlFKUaBVLMmgWR0CoUQCkoF3ZdX2UKGgGaAloD0MITS8xlukX7L+UhpRSlGgVSzJoFkdAqFCzHGS6lXV9lChoBmgJaA9DCHY0DvW7sNy/lIaUUpRoFUsyaBZHQKhQdBhQWN51fZQoaAZoCWgPQwjKb9HJUmvuv5SGlFKUaBVLMmgWR0CoUpjCgsbvdX2UKGgGaAloD0MI/psXJ76a9r+UhpRSlGgVSzJoFkdAqFJZftx+8XV9lChoBmgJaA9DCIBlpUkp6OC/lIaUUpRoFUsyaBZHQKhSDEd/8VJ1fZQoaAZoCWgPQwiJQsu6fyzrv5SGlFKUaBVLMmgWR0CoUc4ZdfLLdX2UKGgGaAloD0MIAySaQBGL2L+UhpRSlGgVSzJoFkdAqFOyYu01InV9lChoBmgJaA9DCPexgt+GGN+/lIaUUpRoFUsyaBZHQKhTcyHEdeZ1fZQoaAZoCWgPQwjwbmWJzjLrv5SGlFKUaBVLMmgWR0CoUyXqJMxodX2UKGgGaAloD0MIryMO2UA67b+UhpRSlGgVSzJoFkdAqFLm2E0zj3V9lChoBmgJaA9DCP8G7dXHw/G/lIaUUpRoFUsyaBZHQKhU5uk1uR91fZQoaAZoCWgPQwhXBP9byY7iv5SGlFKUaBVLMmgWR0CoVKetr9EUdX2UKGgGaAloD0MIRwINNnXe8r+UhpRSlGgVSzJoFkdAqFRbebd8A3V9lChoBmgJaA9DCNjyyvW2meO/lIaUUpRoFUsyaBZHQKhUHH0btJF1fZQoaAZoCWgPQwiug4O9iSHqv5SGlFKUaBVLMmgWR0CoVgm0u14PdX2UKGgGaAloD0MIud42UyGe5L+UhpRSlGgVSzJoFkdAqFXKXOW0JHV9lChoBmgJaA9DCKvq5XeaTO+/lIaUUpRoFUsyaBZHQKhVfQw9JSR1fZQoaAZoCWgPQwjLvFXXoZrev5SGlFKUaBVLMmgWR0CoVT4xk/bCdX2UKGgGaAloD0MInE6y1eWU4L+UhpRSlGgVSzJoFkdAqFcdsabWmXV9lChoBmgJaA9DCEhuTbotEeG/lIaUUpRoFUsyaBZHQKhW3jCHh0h1fZQoaAZoCWgPQwhQU8vW+iLov5SGlFKUaBVLMmgWR0CoVpDC53C9dX2UKGgGaAloD0MI1VqYhXbO5r+UhpRSlGgVSzJoFkdAqFZRusLfDXV9lChoBmgJaA9DCFoNiXssfem/lIaUUpRoFUsyaBZHQKhYJ6/IsAh1fZQoaAZoCWgPQwj1nPS+8bXUv5SGlFKUaBVLMmgWR0CoV+hGH58CdX2UKGgGaAloD0MIfqoKDcQy9r+UhpRSlGgVSzJoFkdAqFea79Q40nV9lChoBmgJaA9DCL2qs1pgD+u/lIaUUpRoFUsyaBZHQKhXXAJswcp1fZQoaAZoCWgPQwinI4CbxYvdv5SGlFKUaBVLMmgWR0CoWS/XwsoVdX2UKGgGaAloD0MIpaKx9ne23b+UhpRSlGgVSzJoFkdAqFjwc1fmcXV9lChoBmgJaA9DCLvQXKeRFuS/lIaUUpRoFUsyaBZHQKhYowhW5pd1fZQoaAZoCWgPQwhhjbPpCODUv5SGlFKUaBVLMmgWR0CoWGP2Xb/PdX2UKGgGaAloD0MIZLDiVGth6b+UhpRSlGgVSzJoFkdAqFpxhMJyAHV9lChoBmgJaA9DCDgteNFXUPK/lIaUUpRoFUsyaBZHQKhaMh/RVp91fZQoaAZoCWgPQwiiz0cZcYHnv5SGlFKUaBVLMmgWR0CoWeWHUMG5dX2UKGgGaAloD0MIQpjbvdyn8b+UhpRSlGgVSzJoFkdAqFmmqR2bG3V9lChoBmgJaA9DCCU9DK1Ozte/lIaUUpRoFUsyaBZHQKhbfxMnJDF1fZQoaAZoCWgPQwhdiNUfYRjov5SGlFKUaBVLMmgWR0CoWz/ReC04dX2UKGgGaAloD0MILNZwkXs66L+UhpRSlGgVSzJoFkdAqFrycNH6M3V9lChoBmgJaA9DCCHp0yr6w/K/lIaUUpRoFUsyaBZHQKhas5uIhyN1fZQoaAZoCWgPQwiBlNi1vd3jv5SGlFKUaBVLMmgWR0CoXH3gccU/dX2UKGgGaAloD0MIaVa2D3nL27+UhpRSlGgVSzJoFkdAqFw+cpb2UXV9lChoBmgJaA9DCIlEoWXdP+a/lIaUUpRoFUsyaBZHQKhb8RJVbRp1fZQoaAZoCWgPQwjkTulg/Z/fv5SGlFKUaBVLMmgWR0CoW7JJf6XTdX2UKGgGaAloD0MI0EVDxqNUyr+UhpRSlGgVSzJoFkdAqF2I2qDK5nV9lChoBmgJaA9DCArzHmeaMOe/lIaUUpRoFUsyaBZHQKhdSVeruIB1fZQoaAZoCWgPQwiFCg4viEjcv5SGlFKUaBVLMmgWR0CoXPv/JeVtdX2UKGgGaAloD0MIptO6DWo/77+UhpRSlGgVSzJoFkdAqFy85U96knV9lChoBmgJaA9DCBiYFYp0P9+/lIaUUpRoFUsyaBZHQKhfPWU8mrt1fZQoaAZoCWgPQwiZKa2/JQDzv5SGlFKUaBVLMmgWR0CoXv7JGOMmdX2UKGgGaAloD0MI4PPDCOHR5b+UhpRSlGgVSzJoFkdAqF6zpHI6sHV9lChoBmgJaA9DCM7F3/YEieS/lIaUUpRoFUsyaBZHQKhedUFSsKd1ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 31250,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb4e7c637378f784093700324aaa5d65aa1cbc15c5b8e12b34630f76aa7a8b50
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:417eb14c79e0d491ee794bbecfbd593fde6214537da90134eda0e5b8b20afc73
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f569beb8790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f569beb6c00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679275244361134144, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyUTGPlbBqr3hBzo/yUTGPlbBqr3hBzo/yUTGPlbBqr3hBzo/yUTGPlbBqr3hBzo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWebGP1zUAT5z5Qg/McuSv8Qld7+N9VU+acOLvh70xb9vuh8/LQ3Fv1mQD7+iXq4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADJRMY+VsGqveEHOj9Fz1m7kygevGjLtjzJRMY+VsGqveEHOj9Fz1m7kygevGjLtjzJRMY+VsGqveEHOj9Fz1m7kygevGjLtjzJRMY+VsGqveEHOj9Fz1m7kygevGjLtjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38724354 -0.08337657 0.7266827 ]\n [ 0.38724354 -0.08337657 0.7266827 ]\n [ 0.38724354 -0.08337657 0.7266827 ]\n [ 0.38724354 -0.08337657 0.7266827 ]]", "desired_goal": "[[ 1.5539047 0.12678665 0.5347511 ]\n [-1.1468259 -0.96542 0.20894451]\n [-0.27297524 -1.5465124 0.6239385 ]\n [-1.5394646 -0.5607963 1.362263 ]]", "observation": "[[ 0.38724354 -0.08337657 0.7266827 -0.00332351 -0.00965323 0.02231379]\n [ 0.38724354 -0.08337657 0.7266827 -0.00332351 -0.00965323 0.02231379]\n [ 0.38724354 -0.08337657 0.7266827 -0.00332351 -0.00965323 0.02231379]\n [ 0.38724354 -0.08337657 0.7266827 -0.00332351 -0.00965323 0.02231379]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwMcZvYKcsj3+zwg8G8wXvqcbJLyKl7M94quBvVZnGD4z3nE+cJqdPPMdHLzZCaQ8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03754401 0.08721258 0.00835037]\n [-0.14823954 -0.01001636 0.08769138]\n [-0.06331612 0.1488317 0.23619919]\n [ 0.01923868 -0.00952862 0.02002423]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIe9rhr8kqG8CUhpRSlIwBbJRLMowBdJRHQKVPBv73wkR1fZQoaAZoCWgPQwgAcOzZczkewJSGlFKUaBVLMmgWR0ClTsmQr+YMdX2UKGgGaAloD0MIQfLOoQwFG8CUhpRSlGgVSzJoFkdApU6OanaWX3V9lChoBmgJaA9DCO53KAr0ORLAlIaUUpRoFUsyaBZHQKVOUyhzvJB1fZQoaAZoCWgPQwhN1qiHaHQawJSGlFKUaBVLMmgWR0ClT9t70Fr3dX2UKGgGaAloD0MIMlcG1QZXH8CUhpRSlGgVSzJoFkdApU+d+I/JNnV9lChoBmgJaA9DCILlCBnIMxXAlIaUUpRoFUsyaBZHQKVPYqQRwqB1fZQoaAZoCWgPQwiLw5lfzVEXwJSGlFKUaBVLMmgWR0ClTydk8RthdX2UKGgGaAloD0MIBrmLMEVxIMCUhpRSlGgVSzJoFkdApVC6p1ie/nV9lChoBmgJaA9DCGFsIchB6RfAlIaUUpRoFUsyaBZHQKVQfSsr/bV1fZQoaAZoCWgPQwg/cmvSbfkXwJSGlFKUaBVLMmgWR0ClUEHbItDldX2UKGgGaAloD0MIO+P74lL1JsCUhpRSlGgVSzJoFkdApVAGjIq9XnV9lChoBmgJaA9DCE+WWu83yiHAlIaUUpRoFUsyaBZHQKVRjahYeT51fZQoaAZoCWgPQwh0CBwJNPAhwJSGlFKUaBVLMmgWR0ClUVAksz2wdX2UKGgGaAloD0MIlzszwXC+FsCUhpRSlGgVSzJoFkdApVEU+V1OkHV9lChoBmgJaA9DCO7of7kWjRLAlIaUUpRoFUsyaBZHQKVQ2dkrf+F1fZQoaAZoCWgPQwiDiNS0iykewJSGlFKUaBVLMmgWR0ClUmFD4QBgdX2UKGgGaAloD0MIzvxqDhDsJcCUhpRSlGgVSzJoFkdApVIjxiG34XV9lChoBmgJaA9DCM/XLJeNDhbAlIaUUpRoFUsyaBZHQKVR6IOYplV1fZQoaAZoCWgPQwg33bJD/IMcwJSGlFKUaBVLMmgWR0ClUa00FbFCdX2UKGgGaAloD0MI2XdF8L+FF8CUhpRSlGgVSzJoFkdApVM5iAlOXXV9lChoBmgJaA9DCENznUZamh3AlIaUUpRoFUsyaBZHQKVS/AgxJul1fZQoaAZoCWgPQwhoPudu1+sTwJSGlFKUaBVLMmgWR0ClUsDBuXNUdX2UKGgGaAloD0MIjSlY42x6D8CUhpRSlGgVSzJoFkdApVKFgYxcmnV9lChoBmgJaA9DCMjRHFn5NSLAlIaUUpRoFUsyaBZHQKVUEH0K7Zp1fZQoaAZoCWgPQwg8MIDwoUQiwJSGlFKUaBVLMmgWR0ClU9MXzlLfdX2UKGgGaAloD0MIrprniHxPIMCUhpRSlGgVSzJoFkdApVOX3WWhRXV9lChoBmgJaA9DCEUtza0QJhnAlIaUUpRoFUsyaBZHQKVTXP557gN1fZQoaAZoCWgPQwghyhe0kIggwJSGlFKUaBVLMmgWR0ClVPF9Sde6dX2UKGgGaAloD0MIgO82b5zUFMCUhpRSlGgVSzJoFkdApVS0Y8+zMXV9lChoBmgJaA9DCAhyUMJM6xrAlIaUUpRoFUsyaBZHQKVUeQvHtF91fZQoaAZoCWgPQwiRKLSs+/8iwJSGlFKUaBVLMmgWR0ClVD4gRsdldX2UKGgGaAloD0MIO29jsyMFHcCUhpRSlGgVSzJoFkdApVXISHuZ1HV9lChoBmgJaA9DCA3C3O7lXhHAlIaUUpRoFUsyaBZHQKVVisvIwM91fZQoaAZoCWgPQwiSJXMs71ofwJSGlFKUaBVLMmgWR0ClVU+CsfaIdX2UKGgGaAloD0MIf2399J/9IMCUhpRSlGgVSzJoFkdApVUUVFhG6XV9lChoBmgJaA9DCNUjDW5rmxrAlIaUUpRoFUsyaBZHQKVWpDfm9xp1fZQoaAZoCWgPQwiNtb+zPdoawJSGlFKUaBVLMmgWR0ClVmbNB4UvdX2UKGgGaAloD0MITYbj+Qy4F8CUhpRSlGgVSzJoFkdApVYrd56dD3V9lChoBmgJaA9DCNlcNc8R6RfAlIaUUpRoFUsyaBZHQKVV8DVYp2F1fZQoaAZoCWgPQwhTA83n3M0YwJSGlFKUaBVLMmgWR0ClV3umixmkdX2UKGgGaAloD0MIuYrFbwq7HMCUhpRSlGgVSzJoFkdApVc+JcgQpXV9lChoBmgJaA9DCKnAyTZwTyXAlIaUUpRoFUsyaBZHQKVXAt5le4V1fZQoaAZoCWgPQwgGaFvNOoMSwJSGlFKUaBVLMmgWR0ClVsekHlfadX2UKGgGaAloD0MIs+20NSIIFcCUhpRSlGgVSzJoFkdApVhRbOeJ53V9lChoBmgJaA9DCPGAsilX6BjAlIaUUpRoFUsyaBZHQKVYFB5X2dx1fZQoaAZoCWgPQwg9mBQfn1AcwJSGlFKUaBVLMmgWR0ClV9jDbah6dX2UKGgGaAloD0MI3zE89rN4G8CUhpRSlGgVSzJoFkdApVedgrpaBHV9lChoBmgJaA9DCOylKQKcLhzAlIaUUpRoFUsyaBZHQKVZKattALR1fZQoaAZoCWgPQwgb8s8M4rMZwJSGlFKUaBVLMmgWR0ClWOwfp2U0dX2UKGgGaAloD0MISgosgCmjDsCUhpRSlGgVSzJoFkdApVixHqeK9HV9lChoBmgJaA9DCGkc6ndh2ybAlIaUUpRoFUsyaBZHQKVYdd8Aq/d1fZQoaAZoCWgPQwhVFRqIZVMSwJSGlFKUaBVLMmgWR0ClWgEUCaJAdX2UKGgGaAloD0MIWOatug7NI8CUhpRSlGgVSzJoFkdApVnDmCAc1nV9lChoBmgJaA9DCIj3HFiOUBXAlIaUUpRoFUsyaBZHQKVZiExIre91fZQoaAZoCWgPQwieYtUgzGUmwJSGlFKUaBVLMmgWR0ClWU0u+RHPdX2UKGgGaAloD0MIj2/vGvTNIsCUhpRSlGgVSzJoFkdApVrZhMJyAHV9lChoBmgJaA9DCABSmzi5xyDAlIaUUpRoFUsyaBZHQKVam/0ulGh1fZQoaAZoCWgPQwg6P8Vx4GUdwJSGlFKUaBVLMmgWR0ClWmC0OVgQdX2UKGgGaAloD0MIB9Fa0eZ4JsCUhpRSlGgVSzJoFkdApVolaKUFCHV9lChoBmgJaA9DCDwW26SiiSHAlIaUUpRoFUsyaBZHQKVbt9x6v7p1fZQoaAZoCWgPQwimCdtPxrAjwJSGlFKUaBVLMmgWR0ClW3p4jbBXdX2UKGgGaAloD0MIOgZkr3cPIcCUhpRSlGgVSzJoFkdApVs/OB19v3V9lChoBmgJaA9DCEF/oUeM1ivAlIaUUpRoFUsyaBZHQKVbBBfKISF1fZQoaAZoCWgPQwjJPV3dsYAiwJSGlFKUaBVLMmgWR0ClXJPrnkksdX2UKGgGaAloD0MIGmzqPCr+F8CUhpRSlGgVSzJoFkdApVxWanaWX3V9lChoBmgJaA9DCCLFAIkmQCTAlIaUUpRoFUsyaBZHQKVcGxDb8FZ1fZQoaAZoCWgPQwjdfY6PFscjwJSGlFKUaBVLMmgWR0ClW9/foA4odX2UKGgGaAloD0MIFt7lIr5bJMCUhpRSlGgVSzJoFkdApV1sPczqKXV9lChoBmgJaA9DCGmNQSeE7h7AlIaUUpRoFUsyaBZHQKVdLtLL6k91fZQoaAZoCWgPQwjtmSUBaloZwJSGlFKUaBVLMmgWR0ClXPOKXOW0dX2UKGgGaAloD0MIuJBHcCNNJMCUhpRSlGgVSzJoFkdApVy4W8AaN3V9lChoBmgJaA9DCB/ylqsf8yLAlIaUUpRoFUsyaBZHQKVeW2MsH0N1fZQoaAZoCWgPQwjX+4123AAVwJSGlFKUaBVLMmgWR0ClXh4EGJN1dX2UKGgGaAloD0MI3QphNZaAIMCUhpRSlGgVSzJoFkdApV3i5AhStXV9lChoBmgJaA9DCNREn48yCibAlIaUUpRoFUsyaBZHQKVdp8iOeat1fZQoaAZoCWgPQwjFVzuKc7QXwJSGlFKUaBVLMmgWR0ClXz2QOnVHdX2UKGgGaAloD0MIQS0GD9MmIcCUhpRSlGgVSzJoFkdApV8ASHuZ1HV9lChoBmgJaA9DCLt9VpkpfR3AlIaUUpRoFUsyaBZHQKVexP9kz411fZQoaAZoCWgPQwjPEfkupQYnwJSGlFKUaBVLMmgWR0ClXooEjgQ6dX2UKGgGaAloD0MIp+mzA67rFMCUhpRSlGgVSzJoFkdApWAz7wazeHV9lChoBmgJaA9DCBZsI57sBiLAlIaUUpRoFUsyaBZHQKVf9pItlI51fZQoaAZoCWgPQwguyQG7mkwjwJSGlFKUaBVLMmgWR0ClX7uJk5IZdX2UKGgGaAloD0MIB3jSwmVtI8CUhpRSlGgVSzJoFkdApV+AbZOBUnV9lChoBmgJaA9DCBU3bjE/lyPAlIaUUpRoFUsyaBZHQKVhemrKeTV1fZQoaAZoCWgPQwj8GkmCcAUXwJSGlFKUaBVLMmgWR0ClYT3Lmp2mdX2UKGgGaAloD0MIChLb3QO0HsCUhpRSlGgVSzJoFkdApWEDVUdaMnV9lChoBmgJaA9DCMK9Mm/VJRrAlIaUUpRoFUsyaBZHQKVgySYgJTl1fZQoaAZoCWgPQwjuYMQ+ATQYwJSGlFKUaBVLMmgWR0ClYuHFglWwdX2UKGgGaAloD0MIHlN3ZRfMI8CUhpRSlGgVSzJoFkdApWKk7hegMHV9lChoBmgJaA9DCCC0Hr5MNBPAlIaUUpRoFUsyaBZHQKViajKxLTR1fZQoaAZoCWgPQwica5ih8XQnwJSGlFKUaBVLMmgWR0ClYi+Zw4sFdX2UKGgGaAloD0MI/MVsyapoG8CUhpRSlGgVSzJoFkdApWRIl+mWMXV9lChoBmgJaA9DCOXRjbCouBvAlIaUUpRoFUsyaBZHQKVkC6QNkOJ1fZQoaAZoCWgPQwi4IjFBDY8dwJSGlFKUaBVLMmgWR0ClY9D+JgstdX2UKGgGaAloD0MIfjUHCOYoD8CUhpRSlGgVSzJoFkdApWOWP91loXV9lChoBmgJaA9DCGnFNxQ+KxnAlIaUUpRoFUsyaBZHQKVlrJlJ6IF1fZQoaAZoCWgPQwiC/61kx64gwJSGlFKUaBVLMmgWR0ClZW/Aj6eodX2UKGgGaAloD0MIxmrz/6oDG8CUhpRSlGgVSzJoFkdApWU1AcDKYHV9lChoBmgJaA9DCNNNYhBYyRnAlIaUUpRoFUsyaBZHQKVk+k43m3h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd76ec3eb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd76ec3fac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679335144413042003, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAASUPXPnf9szu+WQw/SUPXPnf9szu+WQw/SUPXPnf9szu+WQw/SUPXPnf9szu+WQw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWMKIv+pBlb/o+lo+xEn1Pu2ePL+CnZi/Ql96Przmzb8MDGw/K0HLvypY/T6sKWg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABJQ9c+d/2zO75ZDD/CC6E9GcObOnrsfj1JQ9c+d/2zO75ZDD/CC6E9GcObOnrsfj1JQ9c+d/2zO75ZDD/CC6E9GcObOnrsfj1JQ9c+d/2zO75ZDD/CC6E9GcObOnrsfj2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42043522 0.00549286 0.54824436]\n [0.42043522 0.00549286 0.54824436]\n [0.42043522 0.00549286 0.54824436]\n [0.42043522 0.00549286 0.54824436]]", "desired_goal": "[[-1.0684309 -1.166074 0.21384776]\n [ 0.4790784 -0.7368 -1.1923068 ]\n [ 0.244504 -1.608604 0.9220588 ]\n [-1.5879263 0.49481326 0.90688586]]", "observation": "[[0.42043522 0.00549286 0.54824436 0.07863571 0.00118837 0.06223724]\n [0.42043522 0.00549286 0.54824436 0.07863571 0.00118837 0.06223724]\n [0.42043522 0.00549286 0.54824436 0.07863571 0.00118837 0.06223724]\n [0.42043522 0.00549286 0.54824436 0.07863571 0.00118837 0.06223724]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfSi0PamuF74R9Ik+nDSMOQMGij3mS5A+/QIUPrUHET4CDoE+R9K9vUT8BL7aeg8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 8.7967850e-02 -1.4812721e-01 2.6944020e-01]\n [ 2.6742078e-04 6.7394279e-02 2.8182906e-01]\n [ 1.4454265e-01 1.4163096e-01 2.5206000e-01]\n [-9.2686228e-02 -1.2986857e-01 1.4011708e-01]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvfvjvWpl47+UhpRSlIwBbJRLMowBdJRHQKhAjhaTwDx1fZQoaAZoCWgPQwhAGHjuPVznv5SGlFKUaBVLMmgWR0CoQE7NSqEOdX2UKGgGaAloD0MIOGvwvioX3b+UhpRSlGgVSzJoFkdAqEABTER8MXV9lChoBmgJaA9DCCKl2TwOg+u/lIaUUpRoFUsyaBZHQKg/wlEZzgd1fZQoaAZoCWgPQwhd+pekMoX0v5SGlFKUaBVLMmgWR0CoQlJfx+a0dX2UKGgGaAloD0MIg/jAjv+C5b+UhpRSlGgVSzJoFkdAqEIUI1LrX3V9lChoBmgJaA9DCPbP04BB0vO/lIaUUpRoFUsyaBZHQKhBx9Oymhx1fZQoaAZoCWgPQwhJE+8AT1rvv5SGlFKUaBVLMmgWR0CoQYoYWLxadX2UKGgGaAloD0MIAoOkT6uo+b+UhpRSlGgVSzJoFkdAqEQax9oexXV9lChoBmgJaA9DCIMvTKYKxuO/lIaUUpRoFUsyaBZHQKhD3A5aNdZ1fZQoaAZoCWgPQwg9fQT+8HP3v5SGlFKUaBVLMmgWR0CoQ5AkcCHRdX2UKGgGaAloD0MISFFn7iFh9L+UhpRSlGgVSzJoFkdAqENSWHDaXnV9lChoBmgJaA9DCMWtghjoWu6/lIaUUpRoFUsyaBZHQKhGAIgNgBt1fZQoaAZoCWgPQwhznUZaKu/vv5SGlFKUaBVLMmgWR0CoRcI/iYLLdX2UKGgGaAloD0MIkrJF0m705b+UhpRSlGgVSzJoFkdAqEV1oi9qUXV9lChoBmgJaA9DCMMpc/ONaO2/lIaUUpRoFUsyaBZHQKhFN9Ujs2N1fZQoaAZoCWgPQwgw8x38xAHcv5SGlFKUaBVLMmgWR0CoR74RmK64dX2UKGgGaAloD0MIBpylZDkJ47+UhpRSlGgVSzJoFkdAqEd/XPJJXnV9lChoBmgJaA9DCM7g7xezpei/lIaUUpRoFUsyaBZHQKhHMrlvIfd1fZQoaAZoCWgPQwizKOyi6AHiv5SGlFKUaBVLMmgWR0CoRvRSHdoGdX2UKGgGaAloD0MID37iAPr97L+UhpRSlGgVSzJoFkdAqEmNTm4iHXV9lChoBmgJaA9DCKA01Cgkmd6/lIaUUpRoFUsyaBZHQKhJTujRD1J1fZQoaAZoCWgPQwg1Y9F0djLjv5SGlFKUaBVLMmgWR0CoSQKSHM2WdX2UKGgGaAloD0MI0egOYmeK4r+UhpRSlGgVSzJoFkdAqEjE3ZPEbnV9lChoBmgJaA9DCIAtr1xvm/G/lIaUUpRoFUsyaBZHQKhKvpeu3c51fZQoaAZoCWgPQwjZeLDFbh/nv5SGlFKUaBVLMmgWR0CoSn8gIQe4dX2UKGgGaAloD0MIJGB0eXO44r+UhpRSlGgVSzJoFkdAqEoxsTFl1HV9lChoBmgJaA9DCEdX6e46G+m/lIaUUpRoFUsyaBZHQKhJ8tGNJe51fZQoaAZoCWgPQwiVZYhjXdzWv5SGlFKUaBVLMmgWR0CoS8ROUMXrdX2UKGgGaAloD0MIMq64OCo35r+UhpRSlGgVSzJoFkdAqEuE6RyOrHV9lChoBmgJaA9DCF8oYDsYsee/lIaUUpRoFUsyaBZHQKhLN3Ux20R1fZQoaAZoCWgPQwj3kVuTbsvrv5SGlFKUaBVLMmgWR0CoSvhuO0b+dX2UKGgGaAloD0MIXFmis8wi97+UhpRSlGgVSzJoFkdAqEzXlOoHcHV9lChoBmgJaA9DCCNKe4MvzPK/lIaUUpRoFUsyaBZHQKhMmDMeOn51fZQoaAZoCWgPQwi4eHjPgeXev5SGlFKUaBVLMmgWR0CoTEqfe1rqdX2UKGgGaAloD0MIZohjXdzG9r+UhpRSlGgVSzJoFkdAqEwLwUg0THV9lChoBmgJaA9DCOi7W1miM+u/lIaUUpRoFUsyaBZHQKhN55Sm65J1fZQoaAZoCWgPQwhQOpFgqpnav5SGlFKUaBVLMmgWR0CoTahfrrxBdX2UKGgGaAloD0MIejiB6bRu3b+UhpRSlGgVSzJoFkdAqE1bKFIuoXV9lChoBmgJaA9DCBU5RNycyu+/lIaUUpRoFUsyaBZHQKhNHGYKIBR1fZQoaAZoCWgPQwj/CS5W1GDdv5SGlFKUaBVLMmgWR0CoTxFVcUuddX2UKGgGaAloD0MILZYi+Uqg7b+UhpRSlGgVSzJoFkdAqE7SGi5/b3V9lChoBmgJaA9DCGba/pWVJu2/lIaUUpRoFUsyaBZHQKhOhaEBbOh1fZQoaAZoCWgPQwj8x0J0CFzyv5SGlFKUaBVLMmgWR0CoTkaHTI/8dX2UKGgGaAloD0MIghspWyRt6b+UhpRSlGgVSzJoFkdAqFAOZiNKiHV9lChoBmgJaA9DCK7wLhfxHeW/lIaUUpRoFUsyaBZHQKhPzxiobXJ1fZQoaAZoCWgPQwgzi1BsBc3gv5SGlFKUaBVLMmgWR0CoT4GOEM9bdX2UKGgGaAloD0MIpItNK4VA37+UhpRSlGgVSzJoFkdAqE9CioKlYXV9lChoBmgJaA9DCO1GH/MBwfK/lIaUUpRoFUsyaBZHQKhRP+I/JNl1fZQoaAZoCWgPQwi+iSE5mTjwv5SGlFKUaBVLMmgWR0CoUQCkoF3ZdX2UKGgGaAloD0MITS8xlukX7L+UhpRSlGgVSzJoFkdAqFCzHGS6lXV9lChoBmgJaA9DCHY0DvW7sNy/lIaUUpRoFUsyaBZHQKhQdBhQWN51fZQoaAZoCWgPQwjKb9HJUmvuv5SGlFKUaBVLMmgWR0CoUpjCgsbvdX2UKGgGaAloD0MI/psXJ76a9r+UhpRSlGgVSzJoFkdAqFJZftx+8XV9lChoBmgJaA9DCIBlpUkp6OC/lIaUUpRoFUsyaBZHQKhSDEd/8VJ1fZQoaAZoCWgPQwiJQsu6fyzrv5SGlFKUaBVLMmgWR0CoUc4ZdfLLdX2UKGgGaAloD0MIAySaQBGL2L+UhpRSlGgVSzJoFkdAqFOyYu01InV9lChoBmgJaA9DCPexgt+GGN+/lIaUUpRoFUsyaBZHQKhTcyHEdeZ1fZQoaAZoCWgPQwjwbmWJzjLrv5SGlFKUaBVLMmgWR0CoUyXqJMxodX2UKGgGaAloD0MIryMO2UA67b+UhpRSlGgVSzJoFkdAqFLm2E0zj3V9lChoBmgJaA9DCP8G7dXHw/G/lIaUUpRoFUsyaBZHQKhU5uk1uR91fZQoaAZoCWgPQwhXBP9byY7iv5SGlFKUaBVLMmgWR0CoVKetr9EUdX2UKGgGaAloD0MIRwINNnXe8r+UhpRSlGgVSzJoFkdAqFRbebd8A3V9lChoBmgJaA9DCNjyyvW2meO/lIaUUpRoFUsyaBZHQKhUHH0btJF1fZQoaAZoCWgPQwiug4O9iSHqv5SGlFKUaBVLMmgWR0CoVgm0u14PdX2UKGgGaAloD0MIud42UyGe5L+UhpRSlGgVSzJoFkdAqFXKXOW0JHV9lChoBmgJaA9DCKvq5XeaTO+/lIaUUpRoFUsyaBZHQKhVfQw9JSR1fZQoaAZoCWgPQwjLvFXXoZrev5SGlFKUaBVLMmgWR0CoVT4xk/bCdX2UKGgGaAloD0MInE6y1eWU4L+UhpRSlGgVSzJoFkdAqFcdsabWmXV9lChoBmgJaA9DCEhuTbotEeG/lIaUUpRoFUsyaBZHQKhW3jCHh0h1fZQoaAZoCWgPQwhQU8vW+iLov5SGlFKUaBVLMmgWR0CoVpDC53C9dX2UKGgGaAloD0MI1VqYhXbO5r+UhpRSlGgVSzJoFkdAqFZRusLfDXV9lChoBmgJaA9DCFoNiXssfem/lIaUUpRoFUsyaBZHQKhYJ6/IsAh1fZQoaAZoCWgPQwj1nPS+8bXUv5SGlFKUaBVLMmgWR0CoV+hGH58CdX2UKGgGaAloD0MIfqoKDcQy9r+UhpRSlGgVSzJoFkdAqFea79Q40nV9lChoBmgJaA9DCL2qs1pgD+u/lIaUUpRoFUsyaBZHQKhXXAJswcp1fZQoaAZoCWgPQwinI4CbxYvdv5SGlFKUaBVLMmgWR0CoWS/XwsoVdX2UKGgGaAloD0MIpaKx9ne23b+UhpRSlGgVSzJoFkdAqFjwc1fmcXV9lChoBmgJaA9DCLvQXKeRFuS/lIaUUpRoFUsyaBZHQKhYowhW5pd1fZQoaAZoCWgPQwhhjbPpCODUv5SGlFKUaBVLMmgWR0CoWGP2Xb/PdX2UKGgGaAloD0MIZLDiVGth6b+UhpRSlGgVSzJoFkdAqFpxhMJyAHV9lChoBmgJaA9DCDgteNFXUPK/lIaUUpRoFUsyaBZHQKhaMh/RVp91fZQoaAZoCWgPQwiiz0cZcYHnv5SGlFKUaBVLMmgWR0CoWeWHUMG5dX2UKGgGaAloD0MIQpjbvdyn8b+UhpRSlGgVSzJoFkdAqFmmqR2bG3V9lChoBmgJaA9DCCU9DK1Ozte/lIaUUpRoFUsyaBZHQKhbfxMnJDF1fZQoaAZoCWgPQwhdiNUfYRjov5SGlFKUaBVLMmgWR0CoWz/ReC04dX2UKGgGaAloD0MILNZwkXs66L+UhpRSlGgVSzJoFkdAqFrycNH6M3V9lChoBmgJaA9DCCHp0yr6w/K/lIaUUpRoFUsyaBZHQKhas5uIhyN1fZQoaAZoCWgPQwiBlNi1vd3jv5SGlFKUaBVLMmgWR0CoXH3gccU/dX2UKGgGaAloD0MIaVa2D3nL27+UhpRSlGgVSzJoFkdAqFw+cpb2UXV9lChoBmgJaA9DCIlEoWXdP+a/lIaUUpRoFUsyaBZHQKhb8RJVbRp1fZQoaAZoCWgPQwjkTulg/Z/fv5SGlFKUaBVLMmgWR0CoW7JJf6XTdX2UKGgGaAloD0MI0EVDxqNUyr+UhpRSlGgVSzJoFkdAqF2I2qDK5nV9lChoBmgJaA9DCArzHmeaMOe/lIaUUpRoFUsyaBZHQKhdSVeruIB1fZQoaAZoCWgPQwiFCg4viEjcv5SGlFKUaBVLMmgWR0CoXPv/JeVtdX2UKGgGaAloD0MIptO6DWo/77+UhpRSlGgVSzJoFkdAqFy85U96knV9lChoBmgJaA9DCBiYFYp0P9+/lIaUUpRoFUsyaBZHQKhfPWU8mrt1fZQoaAZoCWgPQwiZKa2/JQDzv5SGlFKUaBVLMmgWR0CoXv7JGOMmdX2UKGgGaAloD0MI4PPDCOHR5b+UhpRSlGgVSzJoFkdAqF6zpHI6sHV9lChoBmgJaA9DCM7F3/YEieS/lIaUUpRoFUsyaBZHQKhedUFSsKd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.642681950586848, "std_reward": 0.33457472744781885, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-20T18:52:44.959041"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30ac99d6a8d54d5bda46f04dd25051bfd2ed82cfb3ebbea98991c65ffbf65df2
|
3 |
size 3056
|