File size: 8,973 Bytes
b1721b8 e6a5903 b1721b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
---
base_model:
- nbeerbower/llama-3-stella-8B
- Hastagaras/llama-3-8b-okay
- nbeerbower/llama-3-gutenberg-8B
- openchat/openchat-3.6-8b-20240522
- Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
- cstr/llama3-8b-spaetzle-v20
- mlabonne/ChimeraLlama-3-8B-v3
- flammenai/Mahou-1.1-llama3-8B
- KingNish/KingNish-Llama3-8b
license: other
tags:
- merge
- mergekit
- lazymergekit
- autoquant
- exl2
- autoquant
- exl2
model-index:
- name: Daredevil-8B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.86
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.5
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.24
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 59.89
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.45
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.54
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
name: Open LLM Leaderboard
---
# Daredevil-8B
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/gFEhcIDSKa3AWpkNfH91q.jpeg)
Daredevil-8B is a mega-merge designed to maximize MMLU. On 27 May 24, it is the Llama 3 8B model with the **highest MMLU score**.
From my experience, a high MMLU score is all you need with Llama 3 models.
It is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [nbeerbower/llama-3-stella-8B](https://huggingface.co/nbeerbower/llama-3-stella-8B)
* [Hastagaras/llama-3-8b-okay](https://huggingface.co/Hastagaras/llama-3-8b-okay)
* [nbeerbower/llama-3-gutenberg-8B](https://huggingface.co/nbeerbower/llama-3-gutenberg-8B)
* [openchat/openchat-3.6-8b-20240522](https://huggingface.co/openchat/openchat-3.6-8b-20240522)
* [Kukedlc/NeuralLLaMa-3-8b-DT-v0.1](https://huggingface.co/Kukedlc/NeuralLLaMa-3-8b-DT-v0.1)
* [cstr/llama3-8b-spaetzle-v20](https://huggingface.co/cstr/llama3-8b-spaetzle-v20)
* [mlabonne/ChimeraLlama-3-8B-v3](https://huggingface.co/mlabonne/ChimeraLlama-3-8B-v3)
* [flammenai/Mahou-1.1-llama3-8B](https://huggingface.co/flammenai/Mahou-1.1-llama3-8B)
* [KingNish/KingNish-Llama3-8b](https://huggingface.co/KingNish/KingNish-Llama3-8b)
Thanks to nbeerbower, Hastagaras, openchat, Kukedlc, cstr, flammenai, and KingNish for their merges. Special thanks to Charles Goddard and Arcee.ai for MergeKit.
## π Applications
You can use it as an improved version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct).
This is a censored model. For an uncensored version, see [mlabonne/Daredevil-8B-abliterated](https://huggingface.co/mlabonne/Daredevil-8B-abliterated).
Tested on LM Studio using the "Llama 3" preset.
## β‘ Quantization
* **GGUF**: https://huggingface.co/mlabonne/Daredevil-8B-GGUF
## π Evaluation
### Open LLM Leaderboard
Daredevil-8B is the best-performing 8B model on the Open LLM Leaderboard in terms of MMLU score (27 May 24).
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/xFKhGdSaIxL9_tcJPhM5w.png)
### Nous
Daredevil-8B is the best-performing 8B model on Nous' benchmark suite (evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval), 27 May 24). See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| [**mlabonne/Daredevil-8B**](https://huggingface.co/mlabonne/Daredevil-8B) [π](https://gist.github.com/mlabonne/080f9c5f153ea57a7ab7d932cf896f21) | **55.87** | **44.13** | **73.52** | **59.05** | **46.77** |
| [mlabonne/Daredevil-8B-abliterated](https://huggingface.co/mlabonne/Daredevil-8B-abliterated) [π](https://gist.github.com/mlabonne/32cdd8460804662c856bcb2a20acd49e) | 55.06 | 43.29 | 73.33 | 57.47 | 46.17 |
| [mlabonne/Llama-3-8B-Instruct-abliterated-dpomix](https://huggingface.co/mlabonne/Llama-3-8B-Instruct-abliterated-dpomix) [π](https://gist.github.com/mlabonne/d711548df70e2c04771cc68ab33fe2b9) | 52.26 | 41.6 | 69.95 | 54.22 | 43.26 |
| [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) [π](https://gist.github.com/mlabonne/8329284d86035e6019edb11eb0933628) | 51.34 | 41.22 | 69.86 | 51.65 | 42.64 |
| [failspy/Meta-Llama-3-8B-Instruct-abliterated-v3](https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3) [π](https://gist.github.com/mlabonne/f46cce0262443365e4cce2b6fa7507fc) | 51.21 | 40.23 | 69.5 | 52.44 | 42.69 |
| [mlabonne/OrpoLlama-3-8B](https://huggingface.co/mlabonne/OrpoLlama-3-8B) [π](https://gist.github.com/mlabonne/22896a1ae164859931cc8f4858c97f6f) | 48.63 | 34.17 | 70.59 | 52.39 | 37.36 |
| [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) [π](https://gist.github.com/mlabonne/616b6245137a9cfc4ea80e4c6e55d847) | 45.42 | 31.1 | 69.95 | 43.91 | 36.7 |
## π³ Model family tree
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/ekwRGgnjzEOyprT8sEBFt.png)
## 𧩠Configuration
```yaml
models:
- model: NousResearch/Meta-Llama-3-8B
# No parameters necessary for base model
- model: nbeerbower/llama-3-stella-8B
parameters:
density: 0.6
weight: 0.16
- model: Hastagaras/llama-3-8b-okay
parameters:
density: 0.56
weight: 0.1
- model: nbeerbower/llama-3-gutenberg-8B
parameters:
density: 0.6
weight: 0.18
- model: openchat/openchat-3.6-8b-20240522
parameters:
density: 0.56
weight: 0.12
- model: Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
parameters:
density: 0.58
weight: 0.18
- model: cstr/llama3-8b-spaetzle-v20
parameters:
density: 0.56
weight: 0.08
- model: mlabonne/ChimeraLlama-3-8B-v3
parameters:
density: 0.56
weight: 0.08
- model: flammenai/Mahou-1.1-llama3-8B
parameters:
density: 0.55
weight: 0.05
- model: KingNish/KingNish-Llama3-8b
parameters:
density: 0.55
weight: 0.05
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
dtype: bfloat16
```
## π» Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Daredevil-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.bfloat16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
|