File size: 34,324 Bytes
a3055fa 389b01f a3055fa 06e4cba a3055fa 25d8903 a3055fa 389b01f a3055fa 389b01f a3055fa 9244048 389b01f 9244048 a3055fa 389b01f a3055fa 389b01f a3055fa 389b01f a3055fa 389b01f a3055fa 389b01f a3055fa 389b01f a3055fa 389b01f a3055fa 389b01f a3055fa 389b01f a3055fa 389b01f 9244048 389b01f 9244048 389b01f a3055fa 389b01f a3055fa 389b01f a3055fa 389b01f a3055fa 389b01f a3055fa 389b01f a3055fa 9244048 a3055fa 9244048 a3055fa 9244048 a3055fa 389b01f a3055fa 389b01f a3055fa 389b01f a3055fa 06e4cba a3055fa 06e4cba a3055fa 9244048 a3055fa 389b01f a3055fa 06e4cba 1765fef a3055fa 389b01f a3055fa 9244048 389b01f 9244048 389b01f 9244048 389b01f 9244048 389b01f 9244048 389b01f 9244048 a3055fa 9244048 a3055fa 06e4cba a3055fa 06e4cba 9244048 a3055fa 06e4cba a3055fa 06e4cba a3055fa 06e4cba a3055fa 06e4cba 9244048 06e4cba a3055fa 06e4cba a3055fa 06e4cba a3055fa 06e4cba a3055fa 06e4cba a3055fa 06e4cba a3055fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 |
import copy
import math
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.models.t5 import modeling_t5
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.utils import (
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .decoderonlyt5_config import DecoderOnlyT5Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DecoderOnlyT5Config"
class DecoderOnlyT5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6, use_scale=True, center_scale_at_zero=False):
"""
Construct a layernorm module in the T5 style No bias and no subtraction of mean.
"""
super().__init__()
if use_scale:
self.weight = nn.Parameter(torch.ones(hidden_size))
else:
assert not center_scale_at_zero
self.weight = None
self.center_scale_at_zero = center_scale_at_zero
self.variance_epsilon = eps
def forward(self, hidden_states):
# https://github.com/google/flaxformer/blob/ea17eb012a1d340ddff017b7a534c2162aaec34c/flaxformer/components/layer_norm.py#L30
# layer norm should always be calculated in float32
mean2 = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(mean2 + self.variance_epsilon)
# convert into float16 if necessary
if self.weight is None:
return hidden_states
if self.weight.dtype == torch.float16:
hidden_states = hidden_states.to(torch.float16)
if self.center_scale_at_zero:
return (self.weight + 1.0) * hidden_states
else:
return self.weight * hidden_states
class DecoderOnlyT5LayerFF(modeling_t5.T5LayerFF):
def __init__(self, config: DecoderOnlyT5Config):
super(modeling_t5.T5LayerFF, self).__init__()
if config.is_gated_act:
self.DenseReluDense = modeling_t5.T5DenseGatedActDense(config)
else:
self.DenseReluDense = modeling_t5.T5DenseActDense(config)
if not config.parallel_layers:
self.layer_norm = modeling_t5.DecoderOnlyT5LayerNorm(
config.d_model, eps=config.layer_norm_epsilon
)
else:
self.layer_norm = nn.Identity()
self.dropout = nn.Dropout(config.dropout_rate)
# LlamaRotaryEmbedding
class DecoderOnlyT5RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
)
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings,
device=self.inv_freq.device,
dtype=torch.get_default_dtype(),
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# https://github.com/huggingface/transformers/blob/7ee995fd9c692761c4601ddbffa2ac2ec9f27b0b/src/transformers/models/llama/modeling_llama.py#L263
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim
)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class DecoderOnlyT5Attention(modeling_t5.T5Attention):
"""
Supports both multi-head and multi-query attention.
https://arxiv.org/abs/1911.02150
https://github.com/google/flaxformer/blob/ea17eb012a1d340ddff017b7a534c2162aaec34c/flaxformer/components/attention/dense_attention.py#L292
"""
def __init__(self, config: DecoderOnlyT5Config, has_relative_attention_bias=False):
super(modeling_t5.T5Attention, self).__init__()
self.is_decoder = config.is_decoder
assert not has_relative_attention_bias
assert config.use_rotary_embedding
self.d_model = config.d_model
self.head_dim = config.d_kv
self.num_heads = config.num_heads
self.num_key_value_heads = 1 if config.multi_query_attention else self.n_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.attention_dropout = config.dropout_rate
self.inner_dim = self.num_heads * self.head_dim
self.kv_inner_dim = self.num_key_value_heads * self.head_dim
self.rotary_emb = DecoderOnlyT5RotaryEmbedding(
self.head_dim,
max_position_embeddings=config.relative_attention_max_distance,
base=config.rotary_embedding_max_timescale,
)
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.kv_inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.kv_inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
self.pruned_heads = set()
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
key_value_states=None,
position_bias=None,
mask: Optional[torch.Tensor] = None,
layer_head_mask=None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
assert key_value_states is None
assert position_bias is None
assert layer_head_mask is None
bsz, q_len, _ = hidden_states.size()
query_states = self.q(hidden_states)
key_states = self.k(hidden_states)
value_states = self.v(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if mask is not None:
if mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {mask.size()}"
)
attn_weights = attn_weights + mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.inner_dim)
attn_output = self.o(attn_output)
present_key_value_state = (
(key_states, value_states) if (self.is_decoder and use_cache) else None
)
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class DecoderOnlyT5LayerSelfAttention(modeling_t5.T5LayerSelfAttention):
def __init__(self, config, has_relative_attention_bias=False):
super(modeling_t5.T5LayerSelfAttention, self).__init__()
self.SelfAttention = DecoderOnlyT5Attention(
config, has_relative_attention_bias=has_relative_attention_bias
)
self.layer_norm = DecoderOnlyT5LayerNorm(
config.d_model,
eps=config.layer_norm_epsilon,
use_scale=True,
center_scale_at_zero=True,
)
self.dropout = nn.Dropout(config.dropout_rate)
self.parallel_layers = config.parallel_layers
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
position_ids=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
):
if not self.parallel_layers:
x = self.layer_norm(hidden_states)
else:
x = hidden_states
attention_output = self.SelfAttention(
x,
mask=attention_mask,
position_bias=position_bias,
position_ids=position_ids,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
if not self.parallel_layers:
# When parallel_layers is True, the residual connection is applied
# in the decoder block instead of here.
hidden_states = hidden_states + self.dropout(attention_output[0])
else:
hidden_states = attention_output[0]
outputs = (hidden_states,) + attention_output[
1:
] # add attentions if we output them
return outputs
class DecoderOnlyT5Block(modeling_t5.T5Block):
def __init__(self, config, has_relative_attention_bias=False):
super(modeling_t5.T5Block, self).__init__()
self.is_decoder = config.is_decoder
self.is_decoder_only = config.is_decoder_only
self.layer = nn.ModuleList()
self.layer.append(
DecoderOnlyT5LayerSelfAttention(
config, has_relative_attention_bias=has_relative_attention_bias
)
)
if self.is_decoder:
if config.is_decoder_only:
self.layer.append(nn.Identity())
else:
self.layer.append(modeling_t5.T5LayerCrossAttention(config))
self.parallel_layers = config.parallel_layers
self.layer.append(DecoderOnlyT5LayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
position_ids=None,
encoder_hidden_states=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
cross_attn_layer_head_mask=None,
return_dict=True,
):
assert encoder_attention_mask is None
assert encoder_decoder_position_bias is None
assert cross_attn_layer_head_mask is None
if past_key_value is not None:
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
if len(past_key_value) != expected_num_past_key_values:
raise ValueError(
f"There should be {expected_num_past_key_values} past states. "
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
f"Got {len(past_key_value)} past key / value states"
)
self_attn_past_key_value = past_key_value[:2]
else:
self_attn_past_key_value = None
ff_layer = self.layer[-1]
if self.parallel_layers:
# https://github.com/google/flaxformer/blob/ea17eb012a1d340ddff017b7a534c2162aaec34c/flaxformer/architectures/t5/t5_architecture.py#L563-L568
x = self.layer[0].layer_norm(hidden_states)
ff_output = ff_layer(x)
else:
x = hidden_states
self_attention_outputs = self.layer[0](
x,
attention_mask=attention_mask,
position_bias=position_bias,
position_ids=position_ids,
layer_head_mask=layer_head_mask,
past_key_value=self_attn_past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
x, present_key_value_state = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[
2:
] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 training
if x.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(x).any(),
torch.finfo(x.dtype).max - 1000,
torch.finfo(x.dtype).max,
)
x = torch.clamp(x, min=-clamp_value, max=clamp_value)
do_cross_attention = (
self.is_decoder
and not self.is_decoder_only
and encoder_hidden_states is not None
)
assert not do_cross_attention
if self.parallel_layers:
# https://github.com/google/flaxformer/blob/ea17eb012a1d340ddff017b7a534c2162aaec34c/flaxformer/architectures/t5/t5_architecture.py#L534-L578
x = x + ff_output
x *= 2**-0.5
hidden_states = hidden_states + self.layer[0].dropout(x)
else:
hidden_states = ff_layer(x)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(
hidden_states, min=-clamp_value, max=clamp_value
)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (present_key_value_state,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
class DecoderOnlyT5Stack(modeling_t5.T5Stack):
def __init__(self, config, embed_tokens=None):
super(modeling_t5.T5Stack, self).__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.block = nn.ModuleList(
[
DecoderOnlyT5Block(
config,
has_relative_attention_bias=(
config.has_relative_attention_bias and bool(i == 0)
),
)
for i in range(config.num_layers)
]
)
self.final_layer_norm = DecoderOnlyT5LayerNorm(
config.d_model,
eps=config.layer_norm_epsilon,
use_scale=False,
center_scale_at_zero=False,
)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
def forward(
self,
input_ids=None,
position_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(self.first_device)
self.embed_tokens = self.embed_tokens.to(self.first_device)
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds"
)
if position_ids is None:
seq_length = input_ids.shape[1]
past_key_values_length = (
0 if past_key_values is None else past_key_values[0][0].shape[2]
)
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
).unsqueeze(0)
if inputs_embeds is None:
if self.embed_tokens is None:
raise ValueError(
"You have to initialize the model with valid token embeddings"
)
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
# required mask seq length can be calculated via length of past
mask_seq_length = (
past_key_values[0][0].shape[2] + seq_length
if past_key_values is not None
else seq_length
)
if use_cache is True:
if not self.is_decoder:
raise ValueError(
f"`use_cache` can only be set to `True` if {self} is used as a decoder"
)
if attention_mask is None:
attention_mask = torch.ones(
batch_size, mask_seq_length, device=inputs_embeds.device
)
# initialize past_key_values with `None` if past does not exist
if past_key_values is None:
past_key_values = [None] * len(self.block)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask = self.get_extended_attention_mask(
attention_mask, input_shape
)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(
cross_attn_head_mask, self.config.num_layers
)
present_key_value_states = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, (layer_module, past_key_value) in enumerate(
zip(self.block, past_key_values)
):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if position_bias is not None:
position_bias = position_bias.to(hidden_states.device)
if layer_head_mask is not None:
layer_head_mask = layer_head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.forward,
hidden_states,
extended_attention_mask,
position_bias,
None,
None,
None,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
use_cache,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=extended_attention_mask,
position_bias=position_bias,
position_ids=position_ids,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, present_key_value_state = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
# append next layer key value states
if use_cache:
present_key_value_states = present_key_value_states + (
present_key_value_state,
)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return modeling_t5.BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
class DecoderOnlyT5Model(modeling_t5.T5ForConditionalGeneration):
def __init__(self, config: DecoderOnlyT5Config):
super(modeling_t5.T5ForConditionalGeneration, self).__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
assert (
self.config.num_layers == 0
), "Decoder only model cannot have encoder layers"
self.encoder = None
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = DecoderOnlyT5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
def _tie_weights(self):
if not self.config.tie_word_embeddings:
return
if self.decoder:
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
@add_start_docstrings_to_model_forward(modeling_t5.T5_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
if input_ids is not None:
input_ids = input_ids.to(self.decoder.first_device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.decoder.first_device)
# Decode
outputs = self.decoder(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
self.lm_head = self.lm_head.to(self.decoder.first_device)
sequence_output = sequence_output.to(self.lm_head.weight.device)
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
# move labels to correct device to enable PP
labels = labels.to(lm_logits.device)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|