LTX-Video-0.9.1-HFIE / handler.py
jbilcke-hf's picture
jbilcke-hf HF staff
Update handler.py
0d0a1bc verified
raw
history blame
9.13 kB
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Any, Optional, Tuple
import asyncio
import base64
import io
import logging
import random
import numpy as np
import torch
from diffusers import LTXPipeline, LTXImageToVideoPipeline
from PIL import Image
from varnish import Varnish
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constraints
MAX_WIDTH = 1280
MAX_HEIGHT = 720
MAX_FRAMES = 257
@dataclass
class GenerationConfig:
"""Configuration for video generation"""
width: int = 768
height: int = 512
fps: int = 24
duration_sec: float = 4.0
num_inference_steps: int = 30
guidance_scale: float = 7.5
upscale_factor: float = 2.0
enable_interpolation: bool = False
seed: int = -1 # -1 means random seed
@property
def num_frames(self) -> int:
"""Calculate number of frames based on fps and duration"""
return int(self.duration_sec * self.fps) + 1
def validate_and_adjust(self) -> 'GenerationConfig':
"""Validate and adjust parameters to meet constraints"""
# Round dimensions to nearest multiple of 32
self.width = max(32, min(MAX_WIDTH, round(self.width / 32) * 32))
self.height = max(32, min(MAX_HEIGHT, round(self.height / 32) * 32))
# Adjust number of frames to be in format 8k + 1
k = (self.num_frames - 1) // 8
num_frames = min((k * 8) + 1, MAX_FRAMES)
self.duration_sec = (num_frames - 1) / self.fps
# Set random seed if not specified
if self.seed == -1:
self.seed = random.randint(0, 2**32 - 1)
return self
class EndpointHandler:
"""Handles video generation requests using LTX models and Varnish post-processing"""
def __init__(self, model_path: str = ""):
"""Initialize the handler with LTX models and Varnish
Args:
model_path: Path to LTX model weights
"""
# Enable TF32 for potential speedup on Ampere GPUs
#torch.backends.cuda.matmul.allow_tf32 = True
# Initialize models with bfloat16 precision
self.text_to_video = LTXPipeline.from_pretrained(
model_path,
torch_dtype=torch.bfloat16
).to("cuda")
self.image_to_video = LTXImageToVideoPipeline.from_pretrained(
model_path,
torch_dtype=torch.bfloat16
).to("cuda")
# Enable CPU offload for memory efficiency
#self.text_to_video.enable_model_cpu_offload()
#self.image_to_video.enable_model_cpu_offload()
# Initialize Varnish for post-processing
self.varnish = Varnish(
device="cuda" if torch.cuda.is_available() else "cpu",
output_format="mp4",
output_codec="h264",
output_quality=23,
enable_mmaudio=False
)
async def process_frames(
self,
frames: torch.Tensor,
config: GenerationConfig
) -> tuple[str, dict]:
"""Post-process generated frames using Varnish
Args:
frames: Generated video frames tensor
config: Generation configuration
Returns:
Tuple of (video data URI, metadata dictionary)
"""
# Process video with Varnish
result = await self.varnish(
input_data=frames,
input_fps=config.fps,
upscale_factor=config.upscale_factor if config.upscale_factor > 1 else None,
enable_interpolation=config.enable_interpolation,
output_fps=config.fps
)
# Convert to data URI
video_uri = await result.write(
output_type="data-uri",
output_format="mp4",
output_codec="h264",
output_quality=23
)
# Collect metadata
metadata = {
"width": result.metadata.width,
"height": result.metadata.height,
"num_frames": result.metadata.frame_count,
"fps": result.metadata.fps,
"duration": result.metadata.duration,
"num_inference_steps": config.num_inference_steps,
"seed": config.seed,
"upscale_factor": config.upscale_factor,
"interpolation_enabled": config.enable_interpolation
}
return video_uri, metadata
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Process incoming requests for video generation
Args:
data: Request data containing:
- inputs (str): Text prompt or image
- width (optional): Video width
- height (optional): Video height
- fps (optional): Frames per second
- duration_sec (optional): Video duration
- num_inference_steps (optional): Inference steps
- guidance_scale (optional): Guidance scale
- upscale_factor (optional): Upscaling factor
- enable_interpolation (optional): Enable frame interpolation
- seed (optional): Random seed
Returns:
Dictionary containing:
- video: Base64 encoded MP4 data URI
- content-type: MIME type
- metadata: Generation metadata
"""
# Extract prompt
prompt = data.get("inputs")
if not prompt:
raise ValueError("No prompt provided in the 'inputs' field")
# Create and validate configuration
config = GenerationConfig(
width=data.get("width", GenerationConfig.width),
height=data.get("height", GenerationConfig.height),
fps=data.get("fps", GenerationConfig.fps),
duration_sec=data.get("duration_sec", GenerationConfig.duration_sec),
num_inference_steps=data.get("num_inference_steps", GenerationConfig.num_inference_steps),
guidance_scale=data.get("guidance_scale", GenerationConfig.guidance_scale),
upscale_factor=data.get("upscale_factor", GenerationConfig.upscale_factor),
enable_interpolation=data.get("enable_interpolation", GenerationConfig.enable_interpolation),
seed=data.get("seed", GenerationConfig.seed)
).validate_and_adjust()
try:
with torch.no_grad():
# Set random seeds
random.seed(config.seed)
np.random.seed(config.seed)
generator = torch.manual_seed(config.seed)
# Prepare generation parameters
generation_kwargs = {
"prompt": prompt,
"height": config.height,
"width": config.width,
"num_frames": config.num_frames,
"guidance_scale": config.guidance_scale,
"num_inference_steps": config.num_inference_steps,
"output_type": "pt",
"generator": generator
}
# Check if image-to-video generation is requested
image_data = data.get("image")
if image_data:
# Process base64 image
if image_data.startswith('data:'):
image_data = image_data.split(',', 1)[1]
image_bytes = base64.b64decode(image_data)
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
generation_kwargs["image"] = image
frames = self.image_to_video(**generation_kwargs).frames
else:
frames = self.text_to_video(**generation_kwargs).frames
# Log original shape
logger.info(f"Original frames shape: {frames.shape}")
# Remove batch dimension if present
if len(frames.shape) == 5:
frames = frames.squeeze(0) # Remove batch dimension
logger.info(f"Processed frames shape: {frames.shape}")
# Ensure we have the correct shape
if len(frames.shape) != 4:
raise ValueError(f"Expected tensor of shape [frames, channels, height, width], got shape {frames.shape}")
# Post-process frames
loop = asyncio.new_event_loop()
try:
video_uri, metadata = loop.run_until_complete(
self.process_frames(frames, config)
)
finally:
loop.close()
return {
"video": video_uri,
"content-type": "video/mp4",
"metadata": metadata
}
except Exception as e:
logger.error(f"Error generating video: {str(e)}")
raise RuntimeError(f"Error generating video: {str(e)}")