File size: 6,224 Bytes
33d8deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from functools import partial

import torch
import torch.nn.functional as F
from einops import rearrange
from rotary_embedding_torch import RotaryEmbedding, broadcat
from torch import nn


# helpers


def exists(val):
    return val is not None


def default(val, d):
    return val if exists(val) else d


def cast_tuple(val, depth = 1):
    if isinstance(val, list):
        val = tuple(val)
    return val if isinstance(val, tuple) else (val,) * depth


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def stable_softmax(t, dim = -1, alpha = 32 ** 2):
    t = t / alpha
    t = t - torch.amax(t, dim = dim, keepdim = True).detach()
    return (t * alpha).softmax(dim = dim)


def route_args(router, args, depth):
    routed_args = [(dict(), dict()) for _ in range(depth)]
    matched_keys = [key for key in args.keys() if key in router]

    for key in matched_keys:
        val = args[key]
        for depth, ((f_args, g_args), routes) in enumerate(zip(routed_args, router[key])):
            new_f_args, new_g_args = map(lambda route: ({key: val} if route else {}), routes)
            routed_args[depth] = ({**f_args, **new_f_args}, {**g_args, **new_g_args})
    return routed_args


# classes
class SequentialSequence(nn.Module):
    def __init__(self, layers, args_route = {}, layer_dropout = 0.):
        super().__init__()
        assert all(len(route) == len(layers) for route in args_route.values()), 'each argument route map must have the same depth as the number of sequential layers'
        self.layers = layers
        self.args_route = args_route
        self.layer_dropout = layer_dropout

    def forward(self, x, **kwargs):
        args = route_args(self.args_route, kwargs, len(self.layers))
        layers_and_args = list(zip(self.layers, args))

        for (f, g), (f_args, g_args) in layers_and_args:
            x = x + f(x, **f_args)
            x = x + g(x, **g_args)
        return x


class DivideMax(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        maxes = x.amax(dim = self.dim, keepdim = True).detach()
        return x / maxes


# https://arxiv.org/abs/2103.17239
class LayerScale(nn.Module):
    def __init__(self, dim, depth, fn):
        super().__init__()
        if depth <= 18:
            init_eps = 0.1
        elif depth > 18 and depth <= 24:
            init_eps = 1e-5
        else:
            init_eps = 1e-6

        scale = torch.zeros(1, 1, dim).fill_(init_eps)
        self.scale = nn.Parameter(scale)
        self.fn = fn
    def forward(self, x, **kwargs):
        return self.fn(x, **kwargs) * self.scale

# layer norm


class PreNorm(nn.Module):
    def __init__(self, dim, fn, sandwich = False):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.norm_out = nn.LayerNorm(dim) if sandwich else nn.Identity()
        self.fn = fn

    def forward(self, x, **kwargs):
        x = self.norm(x)
        x = self.fn(x, **kwargs)
        return self.norm_out(x)

# feed forward


class GEGLU(nn.Module):
    def forward(self, x):
        x, gates = x.chunk(2, dim = -1)
        return x * F.gelu(gates)


class FeedForward(nn.Module):
    def __init__(self, dim, dropout = 0., mult = 4.):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, dim * mult * 2),
            GEGLU(),
            nn.Dropout(dropout),
            nn.Linear(dim * mult, dim)
        )

    def forward(self, x):
        return self.net(x)

# Attention


class Attention(nn.Module):
    def __init__(self, dim, seq_len, causal = True, heads = 8, dim_head = 64, dropout = 0.):
        super().__init__()
        inner_dim = dim_head *  heads
        self.heads = heads
        self.seq_len = seq_len
        self.scale = dim_head ** -0.5

        self.causal = causal

        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout)
        )

    def forward(self, x, mask = None):
        b, n, _, h, device = *x.shape, self.heads, x.device
        softmax = torch.softmax

        qkv = self.to_qkv(x).chunk(3, dim = -1)
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)

        q = q * self.scale

        dots = torch.einsum('b h i d, b h j d -> b h i j', q, k)
        mask_value = max_neg_value(dots)

        if exists(mask):
            mask = rearrange(mask, 'b j -> b () () j')
            dots.masked_fill_(~mask, mask_value)
            del mask

        if self.causal:
            i, j = dots.shape[-2:]
            mask = torch.ones(i, j, device = device).triu_(j - i + 1).bool()
            dots.masked_fill_(mask, mask_value)

        attn = softmax(dots, dim=-1)

        out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        out = self.to_out(out)
        return out


# main transformer class
class Transformer(nn.Module):
    def __init__(
        self,
        *,
        dim,
        depth,
        seq_len,
        causal = True,
        heads = 8,
        dim_head = 64,
        ff_mult = 4,
        attn_dropout = 0.,
        ff_dropout = 0.,
        sparse_attn = False,
        sandwich_norm = False,
    ):
        super().__init__()
        layers = nn.ModuleList([])
        sparse_layer = cast_tuple(sparse_attn, depth)

        for ind, sparse_attn in zip(range(depth), sparse_layer):
            attn = Attention(dim, causal = causal, seq_len = seq_len, heads = heads, dim_head = dim_head, dropout = attn_dropout)

            ff = FeedForward(dim, mult = ff_mult, dropout = ff_dropout)

            layers.append(nn.ModuleList([
                LayerScale(dim, ind + 1, PreNorm(dim, attn, sandwich = sandwich_norm)),
                LayerScale(dim, ind + 1, PreNorm(dim, ff, sandwich = sandwich_norm))
            ]))

        execute_type = SequentialSequence
        route_attn = ((True, False),) * depth
        attn_route_map = {'mask': route_attn}

        self.layers = execute_type(layers, args_route = attn_route_map)

    def forward(self, x, **kwargs):
        return self.layers(x, **kwargs)