Initial model files and config for custom ELECTRA Base classifier for sentiment
Browse files- README.md +205 -0
- __init__.py +1 -0
- config.json +44 -0
- electra_base_classifier_sentiment.py +95 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,3 +1,208 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
tags:
|
4 |
+
- sentiment-analysis
|
5 |
+
- text-classification
|
6 |
+
- electra
|
7 |
+
- pytorch
|
8 |
+
- transformers
|
9 |
---
|
10 |
+
|
11 |
+
# Electra Base Classifier for Sentiment Analysis
|
12 |
+
|
13 |
+
This model is a fine-tuned [ELECTRA base model](https://huggingface.co/google/electra-base-discriminator) for sentiment analysis, enhanced with custom pooling and a SwishGLU activation function. It classifies text into three sentiment categories: negative, neutral, and positive.
|
14 |
+
|
15 |
+
## Model Architecture
|
16 |
+
|
17 |
+
- **Base Model**: ELECTRA base (`google/electra-base-discriminator`)
|
18 |
+
- **Custom Components**:
|
19 |
+
- **Pooling Layer**: Custom pooling layer supporting 'cls', 'mean', and 'max' pooling types.
|
20 |
+
- **Activation Function**: Custom SwishGLU activation function.
|
21 |
+
- **Classifier**: Custom classifier with configurable hidden dimensions, number of layers, and dropout rate.
|
22 |
+
|
23 |
+
## Labels
|
24 |
+
|
25 |
+
The model predicts the following labels:
|
26 |
+
|
27 |
+
- `0`: negative
|
28 |
+
- `1`: neutral
|
29 |
+
- `2`: positive
|
30 |
+
|
31 |
+
## How to Use
|
32 |
+
|
33 |
+
To use this model, you need to download the `electra_base_classifier_sentiment.py` file from this repository and place it in your working directory. This file contains the custom classes required to load and use the model.
|
34 |
+
|
35 |
+
```python
|
36 |
+
import torch
|
37 |
+
from transformers import AutoTokenizer
|
38 |
+
from electra_base_classifier_sentiment import ElectraBaseClassifierSentiment # Ensure this file is in your working directory
|
39 |
+
|
40 |
+
model_name = "jbeno/electra-base-classifier-sentiment"
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
+
model = ElectraBaseClassifierSentiment.from_pretrained(model_name)
|
43 |
+
model.eval()
|
44 |
+
|
45 |
+
# Example usage
|
46 |
+
text = "I love this product!"
|
47 |
+
inputs = tokenizer(text, return_tensors="pt")
|
48 |
+
with torch.no_grad():
|
49 |
+
logits = model(**inputs)
|
50 |
+
predicted_class_id = torch.argmax(logits, dim=1).item()
|
51 |
+
predicted_label = model.config.id2label[str(predicted_class_id)]
|
52 |
+
print(f"Predicted label: {predicted_label}")
|
53 |
+
```
|
54 |
+
|
55 |
+
## Requirements
|
56 |
+
- Python 3.7+
|
57 |
+
- PyTorch
|
58 |
+
- Transformers library
|
59 |
+
- Additional Files:
|
60 |
+
- Download **electra_base_classifier_sentiment.py** from this repository and place it in your working directory.
|
61 |
+
|
62 |
+
## Custom Model Components
|
63 |
+
|
64 |
+
### SwishGLU Activation Function
|
65 |
+
|
66 |
+
The SwishGLU activation function combines the Swish activation with a Gated Linear Unit (GLU). It enhances the model's ability to capture complex patterns in the data.
|
67 |
+
|
68 |
+
```python
|
69 |
+
class SwishGLU(nn.Module):
|
70 |
+
def __init__(self, input_dim: int, output_dim: int):
|
71 |
+
super(SwishGLU, self).__init__()
|
72 |
+
self.projection = nn.Linear(input_dim, 2 * output_dim)
|
73 |
+
self.activation = nn.SiLU()
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
x_proj_gate = self.projection(x)
|
77 |
+
projected, gate = x_proj_gate.tensor_split(2, dim=-1)
|
78 |
+
return projected * self.activation(gate)
|
79 |
+
```
|
80 |
+
|
81 |
+
### PoolingLayer
|
82 |
+
|
83 |
+
The PoolingLayer class allows you to choose between different pooling strategies:
|
84 |
+
|
85 |
+
- `cls`: Uses the representation of the \[CLS\] token.
|
86 |
+
- `mean`: Calculates the mean of the token embeddings.
|
87 |
+
- `max`: Takes the maximum value across token embeddings.
|
88 |
+
|
89 |
+
**'mean'** pooling was used in the fine-tuned model.
|
90 |
+
|
91 |
+
```python
|
92 |
+
class PoolingLayer(nn.Module):
|
93 |
+
def __init__(self, pooling_type='cls'):
|
94 |
+
super().__init__()
|
95 |
+
self.pooling_type = pooling_type
|
96 |
+
|
97 |
+
def forward(self, last_hidden_state, attention_mask):
|
98 |
+
if self.pooling_type == 'cls':
|
99 |
+
return last_hidden_state[:, 0, :]
|
100 |
+
elif self.pooling_type == 'mean':
|
101 |
+
return (last_hidden_state * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1)
|
102 |
+
elif self.pooling_type == 'max':
|
103 |
+
return torch.max(last_hidden_state * attention_mask.unsqueeze(-1), dim=1)[0]
|
104 |
+
else:
|
105 |
+
raise ValueError(f"Unknown pooling method: {self.pooling_type}")
|
106 |
+
```
|
107 |
+
|
108 |
+
### Classifier
|
109 |
+
|
110 |
+
The Classifier class is a customizable feed-forward neural network used for the final classification.
|
111 |
+
|
112 |
+
The fine-tuned model had:
|
113 |
+
|
114 |
+
- `input_dim`: 768
|
115 |
+
- `num_layers`: 2
|
116 |
+
- `hidden_dim`: 1024
|
117 |
+
- `hidden_activation`: SwishGLU
|
118 |
+
- `dropout_rate`: 0.3
|
119 |
+
- `n_classes`: 3
|
120 |
+
|
121 |
+
```python
|
122 |
+
class Classifier(nn.Module):
|
123 |
+
def __init__(self, input_dim, hidden_dim, hidden_activation, num_layers, n_classes, dropout_rate=0.0):
|
124 |
+
super().__init__()
|
125 |
+
layers = []
|
126 |
+
layers.append(nn.Linear(input_dim, hidden_dim))
|
127 |
+
layers.append(hidden_activation)
|
128 |
+
if dropout_rate > 0:
|
129 |
+
layers.append(nn.Dropout(dropout_rate))
|
130 |
+
|
131 |
+
for _ in range(num_layers - 1):
|
132 |
+
layers.append(nn.Linear(hidden_dim, hidden_dim))
|
133 |
+
layers.append(hidden_activation)
|
134 |
+
if dropout_rate > 0:
|
135 |
+
layers.append(nn.Dropout(dropout_rate))
|
136 |
+
|
137 |
+
layers.append(nn.Linear(hidden_dim, n_classes))
|
138 |
+
self.layers = nn.Sequential(*layers)
|
139 |
+
```
|
140 |
+
|
141 |
+
## Model Configuration
|
142 |
+
|
143 |
+
The model's configuration (config.json) includes custom parameters:
|
144 |
+
|
145 |
+
- `hidden_dim`: Size of the hidden layers in the classifier.
|
146 |
+
- `hidden_activation`: Activation function used in the classifier ('SwishGLU').
|
147 |
+
- `num_layers`: Number of layers in the classifier.
|
148 |
+
- `dropout_rate`: Dropout rate used in the classifier.
|
149 |
+
- `pooling`: Pooling strategy used ('mean').
|
150 |
+
|
151 |
+
## Training Details
|
152 |
+
|
153 |
+
### Dataset
|
154 |
+
|
155 |
+
The model was trained on the [Sentiment Merged](https://huggingface.co/datasets/jbeno/sentiment_merged) dataset, which is a mix of Stanford Sentiment Treebank (SST-3), DynaSent Round 1, and DynaSent Round 2.
|
156 |
+
|
157 |
+
### Code
|
158 |
+
|
159 |
+
The code used to train the model can be found on GitHub: [jbeno/sentiment](https://github.com/jbeno/sentiment)
|
160 |
+
|
161 |
+
### Research Paper
|
162 |
+
|
163 |
+
The research paper can be found here: [ELECTRA and GPT-4o: Cost-Effective Partners for Sentiment Analysis](https://github.com/jbeno/sentiment/research_paper.pdf)
|
164 |
+
|
165 |
+
### Performance
|
166 |
+
|
167 |
+
- **Merged Dataset**
|
168 |
+
- Macro Average F1: **79.29**
|
169 |
+
- Accuracy: **79.69**
|
170 |
+
- **DynaSent R1**
|
171 |
+
- Macro Average F1: **82.10**
|
172 |
+
- Accuracy: **82.14**
|
173 |
+
- **DynaSent R2**
|
174 |
+
- Macro Average F1: **71.83**
|
175 |
+
- Accuracy: **71.94**
|
176 |
+
- **SST-3**
|
177 |
+
- Macro Average F1: **69.95**
|
178 |
+
- Accuracy: **78.24**
|
179 |
+
|
180 |
+
## License
|
181 |
+
|
182 |
+
This model is licensed under the MIT License.
|
183 |
+
|
184 |
+
## Citation
|
185 |
+
|
186 |
+
If you use this model in your work, please consider citing it:
|
187 |
+
|
188 |
+
```bibtex
|
189 |
+
@misc{beno-2024-electra_base_classifier_sentiment,
|
190 |
+
title={Electra Base Classifier for Sentiment Analysis},
|
191 |
+
author={Jim Beno},
|
192 |
+
year={2024},
|
193 |
+
publisher={Hugging Face},
|
194 |
+
howpublished={\url{https://huggingface.co/jbeno/electra-base-classifier-sentiment}},
|
195 |
+
}
|
196 |
+
```
|
197 |
+
|
198 |
+
## Contact
|
199 |
+
|
200 |
+
For questions or comments, please open an issue on the repository or contact [Jim Beno](https://huggingface.co/jbeno).
|
201 |
+
|
202 |
+
## Acknowledgments
|
203 |
+
|
204 |
+
- The [Hugging Face Transformers library](https://github.com/huggingface/transformers) for providing powerful tools for model development.
|
205 |
+
- The creators of the [ELECTRA model](https://arxiv.org/abs/2003.10555) for their foundational work.
|
206 |
+
- The authors of the datasets used: [Stanford Sentiment Treebank](https://huggingface.co/datasets/stanfordnlp/sst), [DynaSent](https://huggingface.co/datasets/dynabench/dynasent).
|
207 |
+
- [Stanford Engineering CGOE](https://cgoe.stanford.edu), [Chris Potts](https://stanford.edu/~cgpotts/), and the Course Facilitators of [XCS224U](https://online.stanford.edu/courses/xcs224u-natural-language-understanding)
|
208 |
+
|
__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .electra_base_classifier_sentiment import ElectraBaseClassifierSentiment
|
config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ElectraBaseClassifierSentiment"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"dropout_rate": 0.3,
|
8 |
+
"embedding_size": 768,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_activation": "SwishGLU",
|
11 |
+
"hidden_dim": 1024,
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"id2label": {
|
15 |
+
"0": "negative",
|
16 |
+
"1": "neutral",
|
17 |
+
"2": "positive"
|
18 |
+
},
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 3072,
|
21 |
+
"label2id": {
|
22 |
+
"negative": 0,
|
23 |
+
"neutral": 1,
|
24 |
+
"positive": 2
|
25 |
+
},
|
26 |
+
"layer_norm_eps": 1e-12,
|
27 |
+
"max_position_embeddings": 512,
|
28 |
+
"model_type": "electra",
|
29 |
+
"num_attention_heads": 12,
|
30 |
+
"num_hidden_layers": 12,
|
31 |
+
"num_layers": 2,
|
32 |
+
"pad_token_id": 0,
|
33 |
+
"pooling": "mean",
|
34 |
+
"position_embedding_type": "absolute",
|
35 |
+
"summary_activation": "gelu",
|
36 |
+
"summary_last_dropout": 0.1,
|
37 |
+
"summary_type": "first",
|
38 |
+
"summary_use_proj": true,
|
39 |
+
"torch_dtype": "float32",
|
40 |
+
"transformers_version": "4.37.1",
|
41 |
+
"type_vocab_size": 2,
|
42 |
+
"use_cache": true,
|
43 |
+
"vocab_size": 30522
|
44 |
+
}
|
electra_base_classifier_sentiment.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import ElectraPreTrainedModel, ElectraModel
|
4 |
+
|
5 |
+
class SwishGLU(nn.Module):
|
6 |
+
def __init__(self, input_dim: int, output_dim: int):
|
7 |
+
super(SwishGLU, self).__init__()
|
8 |
+
# Linear projection to 2 * output_dim to split for gate and projection
|
9 |
+
self.projection = nn.Linear(input_dim, 2 * output_dim)
|
10 |
+
self.activation = nn.SiLU() # Swish activation
|
11 |
+
|
12 |
+
def forward(self, x):
|
13 |
+
# Apply linear projection
|
14 |
+
x_proj_gate = self.projection(x)
|
15 |
+
# Split the projection into two parts
|
16 |
+
projected, gate = x_proj_gate.tensor_split(2, dim=-1)
|
17 |
+
# Apply Swish activation and multiply
|
18 |
+
return projected * self.activation(gate)
|
19 |
+
|
20 |
+
|
21 |
+
class PoolingLayer(nn.Module):
|
22 |
+
def __init__(self, pooling_type='cls'):
|
23 |
+
super().__init__()
|
24 |
+
self.pooling_type = pooling_type
|
25 |
+
|
26 |
+
def forward(self, last_hidden_state, attention_mask):
|
27 |
+
if self.pooling_type == 'cls':
|
28 |
+
return last_hidden_state[:, 0, :]
|
29 |
+
elif self.pooling_type == 'mean':
|
30 |
+
# Mean pooling over the token embeddings
|
31 |
+
return (last_hidden_state * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1)
|
32 |
+
elif self.pooling_type == 'max':
|
33 |
+
# Max pooling over the token embeddings
|
34 |
+
return torch.max(last_hidden_state * attention_mask.unsqueeze(-1), dim=1)[0]
|
35 |
+
else:
|
36 |
+
raise ValueError(f"Unknown pooling method: {self.pooling_type}")
|
37 |
+
|
38 |
+
class Classifier(nn.Module):
|
39 |
+
def __init__(self, input_dim, hidden_dim, hidden_activation, num_layers, n_classes, dropout_rate=0.0):
|
40 |
+
super().__init__()
|
41 |
+
layers = []
|
42 |
+
layers.append(nn.Linear(input_dim, hidden_dim))
|
43 |
+
layers.append(hidden_activation)
|
44 |
+
if dropout_rate > 0:
|
45 |
+
layers.append(nn.Dropout(dropout_rate))
|
46 |
+
|
47 |
+
for _ in range(num_layers - 1):
|
48 |
+
layers.append(nn.Linear(hidden_dim, hidden_dim))
|
49 |
+
layers.append(hidden_activation)
|
50 |
+
if dropout_rate > 0:
|
51 |
+
layers.append(nn.Dropout(dropout_rate))
|
52 |
+
|
53 |
+
layers.append(nn.Linear(hidden_dim, n_classes))
|
54 |
+
self.layers = nn.Sequential(*layers)
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
return self.layers(x)
|
58 |
+
|
59 |
+
class ElectraBaseClassifierSentiment(ElectraPreTrainedModel):
|
60 |
+
def __init__(self, config):
|
61 |
+
super().__init__(config)
|
62 |
+
self.electra = ElectraModel(config)
|
63 |
+
|
64 |
+
if hasattr(self.electra, 'pooler'):
|
65 |
+
self.electra.pooler = None
|
66 |
+
|
67 |
+
self.pooling = PoolingLayer(pooling_type=config.pooling)
|
68 |
+
|
69 |
+
# Handle custom activation functions
|
70 |
+
activation_name = config.hidden_activation
|
71 |
+
if activation_name == 'SwishGLU':
|
72 |
+
hidden_activation = SwishGLU(
|
73 |
+
input_dim=config.hidden_dim,
|
74 |
+
output_dim=config.hidden_dim
|
75 |
+
)
|
76 |
+
else:
|
77 |
+
activation_class = getattr(nn, activation_name)
|
78 |
+
hidden_activation = activation_class()
|
79 |
+
|
80 |
+
self.classifier = Classifier(
|
81 |
+
input_dim=config.hidden_size,
|
82 |
+
hidden_dim=config.hidden_dim,
|
83 |
+
hidden_activation=hidden_activation,
|
84 |
+
num_layers=config.num_layers,
|
85 |
+
n_classes=config.num_labels,
|
86 |
+
dropout_rate=config.dropout_rate
|
87 |
+
)
|
88 |
+
self.init_weights()
|
89 |
+
|
90 |
+
|
91 |
+
def forward(self, input_ids=None, attention_mask=None, **kwargs):
|
92 |
+
outputs = self.electra(input_ids, attention_mask=attention_mask, **kwargs)
|
93 |
+
pooled_output = self.pooling(outputs.last_hidden_state, attention_mask)
|
94 |
+
logits = self.classifier(pooled_output)
|
95 |
+
return logits
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:777d8bf4e1c5f72c736ac5adc523639c22caf43cf2ba274245a69b2fd0f7e2ca
|
3 |
+
size 451348484
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf240ff1218ce49a92f220aa4964c8723729c74734db31a56a92d5d52d8aeb82
|
3 |
+
size 451391998
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 512,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "ElectraTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|