End of training
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo
|
3 |
+
library_name: peft
|
4 |
+
license: gemma
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: adl-hw3-finetune-gemma-2-chinese-kyara-3
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# adl-hw3-finetune-gemma-2-chinese-kyara-3
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.9876
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0001
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 8
|
43 |
+
- total_train_batch_size: 64
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 3
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:------:|:----:|:---------------:|
|
52 |
+
| 2.411 | 0.1778 | 25 | 2.1908 |
|
53 |
+
| 2.1761 | 0.3556 | 50 | 2.0986 |
|
54 |
+
| 2.112 | 0.5333 | 75 | 2.0473 |
|
55 |
+
| 2.0094 | 0.7111 | 100 | 2.0131 |
|
56 |
+
| 1.9921 | 0.8889 | 125 | 1.9900 |
|
57 |
+
| 1.9151 | 1.0667 | 150 | 1.9888 |
|
58 |
+
| 1.757 | 1.2444 | 175 | 1.9812 |
|
59 |
+
| 1.7965 | 1.4222 | 200 | 1.9721 |
|
60 |
+
| 1.809 | 1.6 | 225 | 1.9549 |
|
61 |
+
| 1.771 | 1.7778 | 250 | 1.9485 |
|
62 |
+
| 1.7242 | 1.9556 | 275 | 1.9445 |
|
63 |
+
| 1.6151 | 2.1333 | 300 | 1.9957 |
|
64 |
+
| 1.5499 | 2.3111 | 325 | 1.9892 |
|
65 |
+
| 1.5169 | 2.4889 | 350 | 1.9909 |
|
66 |
+
| 1.5429 | 2.6667 | 375 | 1.9832 |
|
67 |
+
| 1.5409 | 2.8444 | 400 | 1.9876 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- PEFT 0.13.2
|
73 |
+
- Transformers 4.45.1
|
74 |
+
- Pytorch 2.5.0+cu121
|
75 |
+
- Datasets 3.1.0
|
76 |
+
- Tokenizers 0.20.2
|