File size: 2,343 Bytes
7dbfa9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a698090
7dbfa9b
 
 
 
 
 
 
 
 
fdbfe13
a698090
7dbfa9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a698090
7dbfa9b
 
 
 
 
 
 
 
 
 
 
 
 
 
a698090
 
 
 
 
 
 
 
 
 
7dbfa9b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnext-tiny-224-drfx-surgery-classifier
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.875
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# convnext-tiny-224-drfx-surgery-classifier

This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6160
- Accuracy: 0.875

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 4    | 0.7140          | 0.375    |
| No log        | 2.0   | 8    | 0.6876          | 0.5      |
| 0.7104        | 3.0   | 12   | 0.6666          | 0.625    |
| 0.7104        | 4.0   | 16   | 0.6495          | 0.6875   |
| 0.6567        | 5.0   | 20   | 0.6360          | 0.75     |
| 0.6567        | 6.0   | 24   | 0.6247          | 0.8125   |
| 0.6567        | 7.0   | 28   | 0.6160          | 0.875    |
| 0.6277        | 8.0   | 32   | 0.6098          | 0.875    |
| 0.6277        | 9.0   | 36   | 0.6058          | 0.875    |
| 0.6122        | 10.0  | 40   | 0.6043          | 0.875    |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3